...
首页> 外文期刊>Journal of Computational Physics >Higher-order adaptive finite-element methods for Kohn-Sham density functional theory
【24h】

Higher-order adaptive finite-element methods for Kohn-Sham density functional theory

机译:Kohn-Sham密度泛函理论的高阶自适应有限元方法

获取原文
获取原文并翻译 | 示例

摘要

We present an efficient computational approach to perform real-space electronic structure calculations using an adaptive higher-order finite-element discretization of Kohn-Sham density-functional theory (DFT). To this end, we develop an a priori mesh-adaption technique to construct a close to optimal finite-element discretization of the problem. We further propose an efficient solution strategy for solving the discrete eigenvalue problem by using spectral finite-elements in conjunction with Gauss-Lobatto quadrature, and a Chebyshev acceleration technique for computing the occupied eigenspace. The proposed approach has been observed to provide a staggering 100-200-fold computational advantage over the solution of a generalized eigenvalue problem. Using the proposed solution procedure, we investigate the computational efficiency afforded by higher-order finite-element discretizations of the Kohn-Sham DFT problem. Our studies suggest that staggering computational savings-of the order of 1000-fold-relative to linear finite-elements can be realized, for both all-electron and local pseudopotential calculations, by using higher-order finite-element discretizations. On all the benchmark systems studied, we observe diminishing returns in computational savings beyond the sixth-order for accuracies commensurate with chemical accuracy, suggesting that the hexic spectral-element may be an optimal choice for the finite-element discretization of the Kohn-Sham DFT problem. A comparative study of the computational efficiency of the proposed higher-order finite-element discretizations suggests that the performance of finite-element basis is competing with the plane-wave discretization for non-periodic local pseudopotential calculations, and compares to the Gaussian basis for all-electron calculations to within an order of magnitude. Further, we demonstrate the capability of the proposed approach to compute the electronic structure of a metallic system containing 1688 atoms using modest computational resources, and good scalability of the present implementation up to 192 processors.
机译:我们提出一种有效的计算方法,以使用Kohn-Sham密度泛函理论(DFT)的自适应高阶有限元离散化来执行实际空间电子结构计算。为此,我们开发了一种先验的网格自适应技术,以构造该问题的接近最佳有限元离散化。我们还提出了一种有效的解决方案,通过结合频谱有限元和高斯-洛巴托正交函数来解决离散特征值问题,以及一种Chebyshev加速技术来计算占用的特征空间。已经观察到所提出的方法相对于广义特征值问题的解决方案提供了惊人的100-200倍的计算优势。使用提出的解决方法,我们研究了Kohn-Sham DFT问题的高阶有限元离散化所提供的计算效率。我们的研究表明,对于全电子和局部pseudo势计算,通过使用高阶有限元离散化,可以实现相对于线性有限元而言大约1000倍的惊人计算节省。在所有研究的基准系统上,我们观察到与化学精度相对应的精度,其计算节余的回报率已超出六阶,这表明六角谱元素可能是Kohn-Sham DFT有限元离散化的最佳选择问题。对提议的高阶有限元离散化计算效率的比较研究表明,有限元基础的性能与平面波离散化在非周期局部伪势计算中的竞争,并且在所有方面都与高斯基础进行了比较-电子计算在一个数量级内。此外,我们展示了所提出的方法使用适度的计算资源来计算包含1688个原子的金属系统的电子结构的能力,以及当前实现多达192个处理器的良好可伸缩性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号