...
首页> 外文期刊>Journal of Computational Physics >Multiscale finite-volume method for parabolic problems arising from compressible multiphase flow in porous media
【24h】

Multiscale finite-volume method for parabolic problems arising from compressible multiphase flow in porous media

机译:多孔介质中可压缩多相流引起的抛物线问题的多尺度有限体积方法

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

The multiscale finite-volume (MSFV) method was originally developed for the solution of heterogeneous elliptic problems with reduced computational cost. Recently, some extensions of this method for parabolic problems have been proposed. These extensions proved effective for many cases, however, they are neither general nor completely satisfactory. For instance, they are not suitable for correctly capturing the transient behavior described by the parabolic pressure equation. In this paper, we present a general multiscale finite-volume method for parabolic problems arising, for example, from compressible multiphase flow in porous media. Opposed to previous methods, here, the basis and correction functions are solutions of full parabolic governing equations in localized domains. At the same time, to enhance the computational efficiency of the scheme, the basis functions are kept pressure independent and do not have to be recalculated as pressure evolves. This general approach requires no additional assumptions and its good efficiency and high accuracy is demonstrated for various challenging test cases. Finally, to improve the quality of the results and also to extend the scheme for highly anisotropic heterogeneous problems, it is combined with the iterative MSFV (i-MSFV) method for parabolic problems. As one iterates, the i-MSFV solutions of compressible multiphase problems (parabolic problems) converge to the corresponding fine-scale reference solutions in the same way as demonstrated recently for incompressible cases (elliptic problems). Therefore, the proposed MSFV method can also be regarded as an efficient linear solver for parabolic problems and studies of its efficiency are presented for many test cases.
机译:多尺度有限体积(MSFV)方法最初是为解决异构椭圆问题而开发的,具有降低的计算成本。最近,已经提出了该方法对抛物线问题的一些扩展。这些扩展被证明对许多情况有效,但是,它们既不通用也不完全令人满意。例如,它们不适合正确捕获由抛物线压力方程描述的瞬态行为。在本文中,我们针对抛物线问题提出了一种通用的多尺度有限体积方法,例如,这种问题是由多孔介质中的可压缩多相流引起的。与以前的方法相反,此处的基础和校正函数是局部区域中完整抛物线控制方程的解。同时,为了提高该方案的计算效率,基本函数保持压力独立,并且不必随着压力的变化而重新计算。这种通用方法不需要其他假设,并且针对各种挑战性测试案例都证明了其良好的效率和高精度。最后,为了提高结果的质量并扩展用于高度各向异性的异构问题的方案,该方法与迭代MSFV(i-MSFV)方法相结合,解决了抛物线问题。一次迭代,可压缩多相问题(抛物线问题)的i-MSFV解以与最近在不可压缩情况(椭圆问题)中展示的相同方式收敛到相应的精细尺度参考解。因此,所提出的MSFV方法也可以被视为抛物线问题的有效线性求解器,并针对许多测试案例进行了效率研究。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号