...
首页> 外文期刊>Journal of computational biology: A journal of computational molecular cell biology >An efficient algorithm to compute the landscape of locally optimal RNA secondary structures with respect to the Nussinov-Jacobson energy model
【24h】

An efficient algorithm to compute the landscape of locally optimal RNA secondary structures with respect to the Nussinov-Jacobson energy model

机译:一种相对于Nussinov-Jacobson能量模型计算局部最优RNA二级结构态势的有效算法

获取原文
获取原文并翻译 | 示例
           

摘要

We make a novel contribution to the theory of biopolymer folding, by developing an efficient algorithm to compute the number of locally optimal secondary structures of an RNA molecule, with respect to the Nussinov-Jacobson energy model. Additionally, we apply our algorithm to analyze the folding landscape of selenocysteine insertion sequence (SECIS) elements from A. Bock (personal communication), hammerhead ribozymes from Rfam (Griffiths-Jones et al., 2003), and tRNAs from Sprinzl's database (Sprinzl et al., 1998). It had previously been reported that IRNA has lower minimum free energy than random RNA of the same compositional frequency (Clote et al., 2003; Rivas and Eddy, 2000), although the situation is less clear for mRNA (Seffens and Digby, 1999; Workman and Krogh, 1999; Cohen and Skienna, 2002),(1) which plays no structural role. Applications of our algorithm extend knowledge of the energy landscape differences between naturally occurring and random RNA. Given an RNA molecule a(1),...,a(n) and an integer k greater than or equal to 0, a k-locally optimal secondary structure S is a secondary structure on a(1),...,a(n) which,has k fewer base pairs than the maximum possible number, yet for which no basepairs can be added without violation of the definition of secondary structure (e.g., introducing a pseudoknot). Despite the fact that the number numStr(k) of k-locally optimal structures for a given RNA molecule in general is exponential in n, we present an algorithm running in time 0(n(4)) and space 0(n(3)), which computes numStr(k) for each k. Structurally important RNA, such as SECIS elements, hammerhead ribozymes, and tRNA, all have a markedly smaller number of k-locally optimal structures than that of random RNA of the same dinucleotide frequency, for small and moderate values of k. This suggests a potential future role of our algorithm as a tool to detect noncoding RNA genes.
机译:我们通过开发一种有效的算法来计算RNA分子相对于Nussinov-Jacobson能量模型的局部最优二级结构的数量,从而为生物聚合物折叠理论做出了新的贡献。此外,我们运用我们的算法来分析A. Bock(个人交流)的硒代半胱氨酸插入序列(SECIS)元素,Rfam的锤头状核酶(Griffiths-Jones等,2003)和Sprinzl数据库(Sprinzl)的tRNA的折叠态。等人,1998)。以前有报道说,尽管RNA的情况还不太清楚,但IRNA的最低自由能要低于相同组成频率的随机RNA(Clote等,2003; Rivas和Eddy,2000)(Seffens和Digby,1999; 1999)。 Workman和Krogh,1999; Cohen和Skienna,2002),(1)没有结构性作用。我们算法的应用扩展了自然和随机RNA之间能量分布差异的知识。给定一个RNA分子a(1),...,a(n)和一个大于或等于0的整数k,k局部最优的二级结构S是a(1),...,...上的二级结构a(n)的碱基对比最大可能数目少k,但在不违反二级结构定义(例如引入假结)的情况下,不能添加碱基对。尽管事实上给定RNA分子的k个局部最优结构的数目numStr(k)通常在n中呈指数变化,但我们提出了在时间0(n(4))和空间0(n(3)中运行的算法),它为每个k计算numStr(k)。对于较小和中等的k值,结构重要的RNA(例如SECIS元件,锤头状核酶和tRNA)都具有比相同二核苷酸频率的随机RNA少得多的k局部最优结构。这表明我们的算法作为检测非编码RNA基因的工具的潜在未来作用。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号