首页> 外文期刊>Journal of Combinatorial Theory, Series A >Classification of embeddings of the flag geometries of projective planes in finite projective spaces, part 1
【24h】

Classification of embeddings of the flag geometries of projective planes in finite projective spaces, part 1

机译:有限投影空间中投影平面的标记几何的嵌入的分类,第1部分

获取原文
获取原文并翻译 | 示例
获取外文期刊封面目录资料

摘要

The flag geometry Gamma = (P, L, I) of a finite projective plane Pi of order s is the generalized hexagon of order is (s, l) obtained from Pi by putting P equal to the set of all flags of Pi, by putting L equal to the set of all points and lines of Pi, and where I is the natural incidence relation (inverse containment), i.e., Gamma is the dual of the double of Pi in the sense of H. Van Maldeghem (1998, "Generalized Polygons," Birkhauser Verlag, Basel). Then we say that Gamma is fully and weakly embedded in the finite projective space PG(d, q) if Gamma is a subgeometry of the natural point-line geometry associated with PG(d, q), if s = q if the set of points of Gamma generates PG(d, q), and if the set of points of Gamma not opposite any given point of Gamma does not generate PG(d, q) In an earlier paper, we have shown that the dimension d of the projective space belongs to {6, 7, 8}, and that the projective plane Pi is Desarguesian. Furthermore, we have given examples for d = 6. 7. In the present paper we show that for d = 6, only these examples exist, and we also partly handle the case d = 7. More precisely, we completely classify the Full and weak embeddings of Gamma(Gamma as above) in the case that there are two opposite lines L, M of Gamma with the property that the subspace of PG(d, q) generated by all lines of Gamma meeting either L or M has dimension 6 (which is the case for all embeddings in PG(d, q) d epsilon {6, 7}). Together with Parts 2 and 3, this will provide the complete classification of all full and weak embeddings of Gamma. (C) 2000 Academic Press. [References: 6]
机译:阶s的有限射影平面Pi的标志几何Gamma =(P,L,I)是通过将P等于Pi的所有标志的集合,从Pi获得的阶为(s,l)的广义六边形,是将L等于Pi的所有点和线的集合,其中I是自然入射关系(逆约束),即Gamma是H. Van Maldeghem(1998,“广义多边形”,Birkhauser出版社,巴塞尔)。然后我们说,如果Gamma是与PG(d,q)相关的自然点线几何的子几何,并且如果s = q,则Gamma完全弱地嵌入到有限投影空间PG(d,q)中。 Gamma的点生成PG(d,q),并且如果Gamma的点集与任何给定的Gamma点都不相反,则不会生成PG(d,q)。在较早的论文中,我们证明了投影的维数d空间属于{6,7,8},并且投影平面Pi是Desarguesian。此外,我们给出了d = 6的示例。7.在本文中,我们表明对于d = 6,仅存在这些示例,并且还部分处理了d = 7的情况。更确切地说,我们将Full和在存在两条相对的伽玛线L,M的情况下,伽玛的弱嵌入(如上所述的伽玛),其性质是,所有满足L或M的伽玛线都生成的PG(d,q)子空间的维数为6 (对于PG(d,q)d epsilon {6,7}中的所有嵌入都是这种情况)。连同第2部分和第3部分,这将对Gamma的所有完整嵌入和弱嵌入进行完整分类。 (C)2000学术出版社。 [参考:6]

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号