首页> 外文期刊>Journal of Climate >An Efficient Stochastic Bayesian Approach to Optimal Parameter and Uncertainty Estimation for Climate Model Predictions
【24h】

An Efficient Stochastic Bayesian Approach to Optimal Parameter and Uncertainty Estimation for Climate Model Predictions

机译:气候模型预测的最优参数和不确定性估计的有效随机贝叶斯方法

获取原文
获取原文并翻译 | 示例
           

摘要

One source of uncertainty for clilnate model predictions arises from the fact that climate models have been optimized to reproduce observational ineans. To quantify the uncertainty resulting from a realistic range of model configurations it is necessary to estimate a multidimensional probability distribution that quantifies how likely different model parameter combinations are, given knowledge of the uncertainties in the observations. The computational cost of mapping a multidimensional probabilitydistribution for a climate model using traditional means (e.g., Monte Carlo or Metropolis/Gibbs sampling) is impractical, requiring 10~4-10~6 model evaluations for problems involving less than 10 parameters. This paper examines whether such a calculationis more feasible using a particularly efficient but approximate algorithm called Bayesian stochastic inversion based on multiple very fast simulated annealing (VFSA). Investigated here is how the number of model parameters natural variability and the degree of nonlinearity affect the computational cost and accuracy of estimating parameter uncertainties within a surrogate climate model that is able to approximate the noise and response behavior of a realistic atmospheric GCM. In general, multiple VFSA is one to two orders of magnitude more efficient than the Metropolis/Gibbs sampler, depending primarily on dimensionality of the parameter space analysis. The average cost of estimating parameter uncertainties is only moderately affected by noise within the model as long as the signal-to-noise ratio is greater than 5. Also theavterage cost of estimating parameter uncertainties nearly doubles for problems in which parameters are nonlinearly related.
机译:气候模型已经过优化,可以再现观测性因素,因此,对气候变化模型预测的不确定性来源之一。为了量化由实际模型配置范围导致的不确定性,有必要在已知观测值不确定性的前提下,估算多维概率分布,该多维概率分布将量化不同模型参数组合的可能性。使用传统方法(例如蒙特卡洛或Metropolis / Gibbs抽样)为气候模型绘制多维概率分布的计算成本是不切实际的,对于涉及少于10个参数的问题,需要10〜4-10〜6个模型评估。本文研究了一种使用基于多重非常快速模拟退火(VFSA)的特别有效但近似的称为贝叶斯随机反演的算法,是否更可行。这里研究的是模型参数的自然可变性和非线性程度如何影响替代气候模型中估算参数不确定性的计算成本和准确性,该模型能够近似现实大气GCM的噪声和响应行为。通常,多个VFSA的效率要比Metropolis / Gibbs采样器高一到两个数量级,这主要取决于参数空间分析的维数。只要信噪比大于5,估计参数不确定性的平均成本仅会受到模型中噪声的中等影响。此外,对于参数与非线性相关的问题,估计参数不确定性的平均成本几乎翻了一番。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号