...
首页> 外文期刊>Journal of chemical theory and computation: JCTC >Improved Accuracy in RNA-Protein Rigid Body Docking by Incorporating Force Field for Molecular Dynamics Simulation into the Scoring Function
【24h】

Improved Accuracy in RNA-Protein Rigid Body Docking by Incorporating Force Field for Molecular Dynamics Simulation into the Scoring Function

机译:通过将分子动力学模拟的力场纳入评分函数,提高了RNA-蛋白质刚体对接的准确性

获取原文
获取原文并翻译 | 示例

摘要

RNA-protein interactions play fundamental roles in many biological processes. To understand these interactions, it is necessary to know the three-dimensional structures of RNA-protein complexes. However, determining the tertiary structure of these complexes is often difficult, suggesting that an accurate rigid body docking for RNA-protein complexes is needed. In general, the rigid body docking process is divided into two steps: generating candidate structures from the individual RNA and protein structures and then narrowing down the candidates. In this study, we focus on the former problem to improve the prediction accuracy in RNA-protein docking. Our method is based on the integration of physicochemical information about RNA into ZDOCK, which is known as one of the most successful computer programs for protein protein docking. Because recent studies showed the current force field for molecular dynamics simulation of protein and nucleic acids is quite accurate, we modeled the physicochemical information about RNA by force fields such as AMBER and CHARMM. A comprehensive benchmark of RNA-protein docking, using three recently developed data sets, reveals the remarkable prediction accuracy of the proposed method compared with existing programs for docking: the highest success rate is 34.7% for the predicted structure of the RNA-protein complex with the best score and 79.2% for 3,600 predicted ones. Three full atomistic force fields for RNA (AMBER94, AMBER99, and CHARMM22) produced almost the same accurate result, which showed current force fields for nucleic acids are quite accurate. In addition, we found that the electrostatic interaction and the representation of shape complementary between protein and RNA plays the important roles for accurate prediction of the native structures of RNA-protein complexes.
机译:RNA-蛋白质相互作用在许多生物学过程中起着基本作用。要了解这些相互作用,有必要了解RNA蛋白质复合物的三维结构。但是,确定这些复合物的三级结构通常很困难,这表明需要精确的刚体对接RNA-蛋白质复合物。通常,刚体对接过程分为两个步骤:从单个RNA和蛋白质结构生成候选结构,然后缩小候选范围。在这项研究中,我们专注于前一个问题,以提高RNA蛋白质对接的预测准确性。我们的方法基于将有关RNA的理化信息整合到ZDOCK中,ZDOCK被称为最成功的蛋白质对接计算机程序之一。因为最近的研究表明,目前用于蛋白质和核酸分子动力学模拟的力场非常准确,所以我们通过力场(例如AMBER和CHARMM)对有关RNA的理化信息进行了建模。使用三个新近开发的数据集,对RNA-蛋白质对接的综合基准表明,与现有的对接程序相比,该方法的预测准确性极高:RNA-蛋白质复合物的预测结构的最高成功率为34.7%。得分最高的是3,600个预测得分的79.2%。 RNA的三个完整原子力场(AMBER94,AMBER99和CHARMM22)产生了几乎相同的准确结果,这表明核酸的当前力场非常准确。此外,我们发现静电相互作用和蛋白质与RNA之间形状互补的表示在准确预测RNA蛋白质复合物的天然结构中起着重要作用。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号