首页> 外文期刊>Journal of chemical theory and computation: JCTC >Understanding the epsilon and zeta High-Pressure Solid Phases of Oxygen. Systematic Periodic Density Functional Theory Studies Using Localized Atomic Basis
【24h】

Understanding the epsilon and zeta High-Pressure Solid Phases of Oxygen. Systematic Periodic Density Functional Theory Studies Using Localized Atomic Basis

机译:了解氧的epsilon和zeta高压固相。使用局部原子基础的系统周期性密度泛函理论研究

获取原文
获取原文并翻译 | 示例
           

摘要

The experimentally characterized epsilon and zeta phases of solid oxygen are studied by periodic Hartree-Fock (HF) and Density Functional Theory calculations at pressures from 10 to 160 GPa using different types of exchange-correlation functionals with Gaussian atomic basis sets. Full geometry optimizations of the monoclinic C-2/m (O-2)(4) unit cell were done to study the evolution of the structural and electronic properties with pressure. Vibrational calculations were performed at each pressure. While periodic HF does not predict the epsilon-zeta phase transition in the considered range, Local Density approximation and Generalized Gradient approximation methods predict too low transition pressures. The performance of hybrid functional methods is dependent on the amount of non-local HF exchange. PBE0, M06, B3PW91, and B3LYP approaches correctly predict the structural and electronic changes associated with the phase transition. GGA and hybrid functionals predict a pressure range where both phases coexist, but only the latter type of methods yield results in agreement with experiment. Using the optimized (O-2)(4) unit cell at each pressure we show, through CASSCF(8,8) calculations, that the greater accuracy of the optimized geometrical parameters with increasing pressure is due to a decreasing multireference character of the unit cell wave function. The mechanism of the transition from the non-conducting to the conducting zeta phase is explained through the Electron Pair Localization Function, which clearly reveals chemical bonding between O-2 molecules in the ab crystal planes belonging to different unit cells due to much shorter intercell O-2-O-2 distances.
机译:使用不同类型的交换相关函数和高斯原子基集,通过周期性Hartree-Fock(HF)和密度泛函理论计算,在10至160 GPa的压力下,对固体氧的实验表征的ε相和zeta相进行了研究。进行了单斜C-2 / m(O-2)(4)晶胞的完整几何优化,以研究结构和电子性能随压力的变化。在每个压力下进行振动计算。尽管周期性HF不能预测所考虑范围内的ε-zeta相变,但是局部密度近似法和广义梯度近似法预测的过渡压力太低。混合功能方法的性能取决于非本地HF交换的数量。 PBE0,M06,B3PW91和B3LYP方法可以正确预测与相变有关的结构和电子变化。 GGA和混合功能预测了两个相共存的压力范围,但是只有后一种方法才能产生与实验一致的结果。通过在CASSCF(8,8)计算中,在每个压力下使用优化的(O-2)(4)晶胞,我们表明,随着压力的增加,优化的几何参数的准确性更高,这是由于该单元的多参考特性降低了细胞波功能。通过电子对定位功能解释了从非导电相转变为导电zeta相的机理,该机理清楚地揭示了由于胞间O的缩短,属于不同晶胞的ab晶面中的O-2分子之间的化学键合-2-O-2距离。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号