首页> 外文期刊>Journal of chemical theory and computation: JCTC >How To Deal with Multiple Binding Poses in Alchemical Relative Protein-Ligand Binding Free Energy Calculations
【24h】

How To Deal with Multiple Binding Poses in Alchemical Relative Protein-Ligand Binding Free Energy Calculations

机译:如何处理炼金术相对蛋白配体结合自由能计算中的多个结合姿势

获取原文
获取原文并翻译 | 示例
           

摘要

Recent advances in Unproved force fields and sampling methods have made it possible for the accurate calculation of protein ligand binding free energies. Alchemical free energy perturbation (EP) using an explicit solvent model is one of the most rigorous methods to calculate relative binding free energies: However, for cases where there are high energy barriers separating the relevant conformations that are important for ligand binding, the calculated free energy-may depend on the initial conformation used in the Simulation due to the lack of complete sampling of all the important regions in phase space. This is particularly true for ligands with multiple possible binding modes separated by high energy barriers, making it difficult to sample all relevant binding modes even with modern enhanced sampling methods. In this paper, we apply a previously developed method that provides a corrected binding free energy for ligands with multiple binding modes by combining the free energy results from multiple alchemical PEP calculations starting from all enumerated poses, and the results are compared with Glide docking and MM-GBSA calculations. From these calculations, the dominant ligand binding mode can also be predicted. We apply this method to a. series of ligands that bind to c-Jun N-terminal kinase-1 (JNK1) and obtain Unproved free energy results. The dominant ligand binding modes predicted by this method agree with the available crystallography, while both Glide docking and MM-GBSA calculations incorrectly predict the binding modes for some ligands. The method also helps separate the force field error from the ligand sampling error, such that deviations in the predicted binding free energy from the experimental values likely indicate possible inaccuracies in the force field. An error in the force field for a subset of the ligands studied was identified using this method, and improved free energy results were obtained by correcting the partial charges assigned to the ligands. This improved the root-mean-square error (RMSE) for the predicted binding free energy from 1,9 kcal/mol with the original partial charges to 1.3 kcal/mol with the corrected partial Charges.
机译:力场和采样方法的最新进展使得精确计算蛋白质配体结合自由能成为可能。使用显式溶剂模型的炼金术自由能微扰(EP)是计算相对结合自由能的最严格的方法之一:但是,如果存在高能垒,这些分子对配体结合非常重要,其相关构象分开,则计算出的自由能由于缺乏对相空间中所有重要区域的完整采样,能量可能取决于模拟中使用的初始构象。对于具有被高能垒隔开的多种可能结合模式的配体而言,尤其如此,即使采用现代的增强采样方法,也很难对所有相关的结合模式进行采样。在本文中,我们采用了以前开发的方法,该方法通过结合从所有枚举姿势开始的多个炼金术PEP计算得到的自由能结果,为具有多种结合模式的配体提供了校正的结合自由能,并将结果与​​Glide对接和MM进行了比较-GBSA计算。从这些计算中,也可以预测主要的配体结合模式。我们将此方法应用于与c-Jun N端激酶1(JNK1)结合的一系列配体,并获得未经证实的自由能结果。通过这种方法预测的主要配体结合模式与可用的晶体学一致,而滑翔对接和MM-GBSA计算均错误地预测了某些配体的结合模式。该方法还有助于将力场误差与配体采样误差区分开,从而使预测的结合自由能与实验值的偏差可能表明力场可能存在误差。使用此方法可以确定所研究的一部分配体在力场中的误差,并通过校正分配给配体的部分电荷获得改进的自由能结果。这将预测的结合自由能的均方根误差(RMSE)从原来的部分电荷的1,9 kcal / mol提高到修正的部分电荷的1.3 kcal / mol。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号