首页> 外文期刊>Journal of chemical theory and computation: JCTC >High-Efficiency Microiterative Optimization in QM/MM Simulations of Large Flexible Systems
【24h】

High-Efficiency Microiterative Optimization in QM/MM Simulations of Large Flexible Systems

机译:大型柔性系统QM / MM仿真中的高效微迭代优化

获取原文
获取原文并翻译 | 示例
           

摘要

We present here a double-optimizations-of-buffer-region (DOBR) microiterative scheme for high-efficiency energy minimizations of large, flexible systems in combined quantum-mechanical/molecular-mechanical (QM/MM) calculations. In the DOBR scheme, an entire system is divided into three regions: the core, buffer, and outer regions. The core region includes QM atoms and the MM atoms within a cutoff distance R-1 to the QM atoms (denoted by MM1 atoms), and the buffer region consists of MM atoms within another cutoff distance R-2 to MM1 atoms. Each DOBR microcycle involves two steps: First, QM atoms are assigned electrostatic potential (ESP) charges, and the buffer and outer regions are optimized at the MM level with the core region kept frozen. Second, the core and buffer regions are optimized at the QM/MM level using the electrostatic embedding with the outer region kept frozen. The two steps are repeated until two optimizations converge at one structure. The DOBR scheme was tested in the optimizations of nucleobases solvated in water spheres of 30 angstrom radius, where the initial geometries were extracted from the trajectories of classical molecular dynamics simulations, and the cutoff distances. R-1 and R-2 were set to 5.0 and 4.0 angstrom, respectively. For, comparisons, the optimizations were also carried out by a "standard" scheme without microiteration and by the two-region microiterative (TRM) method. We found that the averaged number of QM calculations for the DOBR scheme is only similar to 1% of that of the standard scheme and similar to 6% of the TRM approach. The promising results indicate that the DOBR scheme could significantly increase the efficiency of geometry optimizations for large, flexible systems in QM/MM calculations.
机译:我们在这里提出了一个双重优化的缓冲区区域(DOBR)微迭代方案,用于在组合量子力学/分子力学(QM / MM)计算中对大型,灵活的系统进行高效的能量最小化。在DOBR方案中,整个系统分为三个区域:核心,缓冲区和外部区域。核心区域包括QM原子和到QM原子的截止距离R-1内的MM原子(用MM1原子表示),缓冲区域由另一个截止距离R-2到MM1原子内的MM原子组成。每个DOBR微循环都涉及两个步骤:首先,为QM原子分配静电势(ESP)电荷,并在MM级别优化缓冲区和外部区域,并使核心区域保持冻结状态。其次,在保持冻结的外部区域的情况下,使用静电嵌入在QM / MM级别优化核心区域和缓冲区。重复这两个步骤,直到两个优化收敛在一个结构上。在优化半径为30埃的水球中溶解的核碱基的过程中,对DOBR方案进行了测试,该方案从经典分子动力学模拟的轨迹和截止距离中提取了初始几何形状。 R-1和R-2分别设置为5.0和4.0埃。为了进行比较,还通过没有微迭代的“标准”方案和两区域微迭代(TRM)方法进行了优化。我们发现,DOBR方案的平均QM计算数仅相当于标准方案的1%,而类似于TRM方法的6%。有希望的结果表明,DOBR方案可以显着提高QM / MM计算中大型,灵活系统的几何优化效率。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号