首页> 外文期刊>Journal of chemical theory and computation: JCTC >Long-Time-Step Molecular Dynamics through Hydrogen Mass Repartitioning
【24h】

Long-Time-Step Molecular Dynamics through Hydrogen Mass Repartitioning

机译:通过氢质量重新分配的长步分子动力学

获取原文
获取原文并翻译 | 示例
           

摘要

Previous studies have shown that the method of hydrogen mass repartitioning (HMR) is a potentially useful tool for accelerating molecular dynamics (MD) simulations. By repartitioning the mass of heavy atoms into the bonded hydrogen atoms, it is possible to slow the highest-frequency motions of the macromolecule under study, thus allowing the time step of the simulation to be increased by up to a factor of 2. In this communication, we investigate further how this mass repartitioning allows the simulation time step to be increased in a stable fashion without significantly increasing discretization error. To this end, we ran a set of simulations with different time steps and mass distributions on a three-residue peptide to get a comprehensive view of the effect of mass repartitioning and time step increase on a system whose accessible phase space is fully explored in a relatively short amount of time. We next studied a 129-residue protein, hen egg white lysozyme (HEWL), to verify that the observed behavior extends to a larger, more-realistic, system. Results for the protein include structural comparisons from MD trajectories, as well as comparisons of pK(a) calculations via constant-pH MD. We also calculated a potential of mean force (PMF) of a dihedral rotation for the MTS [(1-oxyl-2,2,5,5-tetramethyl-pyrroline-3-methyl)methanethiosulfonate] spin label via umbrella sampling with a set of regular MD trajectories, as well as a set of mass-repartitioned trajectories with a time step of 4 fs. Since no significant difference in kinetics or thermodynamics is observed by the use of fast HMR trajectories, further evidence is provided that long-time-step HMR MD simulations are a viable tool for accelerating MD simulations for molecules of biochemical interest.
机译:先前的研究表明,氢质量重分配(HMR)方法是加速分子动力学(MD)模拟的潜在有用工具。通过将重原子的质量重新分配为键合的氢原子,可以减缓正在研究的高分子的最高频率运动,从而使模拟的时间步长最多增加2倍。在通信方面,我们将进一步研究这种大规模重分配如何在不显着增加离散化误差的情况下以稳定的方式增加模拟时间步长。为此,我们对三残基肽段进行了一系列具有不同时间步长和质量分布的模拟,以全面了解质量重新分配和时间步长增加对系统中可及相空间的影响。时间相对较短。接下来,我们研究了一种129个残基的蛋白质,鸡蛋蛋白溶菌酶(HEWL),以验证观察到的行为扩展到了一个更大,更真实的系统。蛋白质的结果包括来自MD轨迹的结构比较,以及通过恒定pH MD进行的pK(a)计算的比较。我们还通过一组伞形采样计算了MTS [(1-oxyl-2,2,5,5-tetramethyl-pyrroline-3-methyl)甲烷硫代磺酸盐]自旋标签的二面角旋转平均力(PMF)的潜力规则的MD轨迹,以及一组质量步距为4 fs的轨迹。由于通过使用快速HMR轨迹没有观察到动力学或热力学方面的显着差异,因此提供了进一步的证据,表明长期进行的HMR MD模拟是加速对生化分子感兴趣的MD模拟的可行工具。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号