首页> 外文期刊>Journal of chemical theory and computation: JCTC >An Atomistic Statistically Effective Energy Function for Computational Protein Design
【24h】

An Atomistic Statistically Effective Energy Function for Computational Protein Design

机译:计算蛋白质设计的原子统计有效能量函数

获取原文
获取原文并翻译 | 示例
           

摘要

Shortcomings in the definition of effective free-energy surfaces of proteins are recognized to be a major contributory factor responsible for the low success rates of existing automated methods for computational protein design (CPD). The formulation of an atomistic statistically effective energy function (SEEF) suitable for a wide range of CPD applications and its derivation from structural data extracted from protein domains and protein-ligand complexes are described here. The proposed energy function comprises nonlocal atom-based and local residue based SEEFs, which are coupled using a novel atom connectivity number factor to scale short-range, pairwise, nonbonded atomic interaction energies and a surface-area-dependent cavity energy term. This energy function was used to derive additional SEEFs describing the unfolded-state ensemble of any given residue sequence based on computed average energies for partially or fully solvent-exposed fragments in regions of irregular structure in native proteins. Relative thermal stabilities of 97 T4 bacteriophage lysozyme mutants were predicted from calculated energy differences for folded and unfolded states with an average unsigned error (AUE) of 0.84 kcal mol(-1) when compared to experiment. To demonstrate the utility of the energy function for CPD, further validation was carried out in tests of its capacity to recover cognate protein sequences and to discriminate native and near-native protein folds, loop conformers, and small-molecule ligand binding poses from non-native benchmark decoys. Experimental ligand binding free energies for a diverse set of 80 protein complexes could be predicted with an AUE of 2.4 kcal mol(-1) using an additional energy term to account for the loss in ligand configurational entropy upon binding. The atomistic SEEF is expected to improve the accuracy of residue-based coarse-grained SEEFs currently used in CPD and to extend the range of applications of extant atom-based protein statistical potentials.
机译:蛋白质有效自由能表面定义的缺陷被认为是造成现有的蛋白质自动计算方法(CPD)自动化方法成功率低的主要因素。本文介绍了适用于多种CPD应用的原子统计有效能量函数(SEEF)的公式,以及其从蛋白质结构域和蛋白质-配体复合物中提取的结构数据得出的结果。拟议的能量函数包括基于非局部原子的和基于局部残基的SEEF,它们使用新颖的原子连接数因子进行耦合,以缩放短程,成对,非键合的原子相互作用能和表面积相关的腔体能量项。基于天然蛋白质中不规则结构区域中部分或全部溶剂暴露的片段的计算出的平均能量,该能量函数用于导出描述任何给定残基序列的未折叠状态整体的其他SEEF。从计算的折叠和展开状态的能量差异预测的97 T4噬菌体溶菌酶突变体的相对热稳定性,与实验相比,平均无符号误差(AUE)为0.84 kcal mol(-1)。为了证明能量功能对CPD的实用性,在测试其恢复同源蛋白质序列以及区分天然和近天然蛋白质折叠,环构象异构体和小分子配体结合姿势与非氨基酸的能力方面进行了进一步验证。原生基准诱饵。实验的配体结合自由能为一组80种蛋白质复合物的自由能的AUE为2.4 kcal mol(-1),使用附加的能量项来解释结合后配体构型熵的损失。原子SEEF有望提高CPD当前使用的基于残基的粗粒SEEF的准确性,并扩展现有基于原子的蛋白质统计潜力的应用范围。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号