首页> 外文期刊>Journal of chemical theory and computation: JCTC >Construction and Application of a New Dual-Hybrid Random Phase Approximation
【24h】

Construction and Application of a New Dual-Hybrid Random Phase Approximation

机译:新的双混合随机相位逼近的构造与应用

获取原文
获取原文并翻译 | 示例
           

摘要

The direct random phase approximation (dRPA) combined with Kohn-Sham reference orbitals is among the most promising tools in computational chemistry and applicable in many areas of chemistry and physics. The reason for this is that it scales as N-4 with the system size, which is a considerable advantage over the accurate ab initio wave function methods like standard coupled-cluster. dRPA also yields a considerably more accurate description of thermodynamic and electronic properties than standard density-functional theory methods. It is also able to describe strong static electron correlation effects even in large systems with a small or vanishing band gap missed by common single-reference methods. However, dRPA has several flaws due to its self-correlation error. In order to obtain accurate and precise reaction energies, barriers and noncovalent intra- and intermolecular interactions, we construct a new dual-hybrid dRPA (hybridization of exact and semilocal exchange in both the energy and the orbitals) and test the performance of this new functional on isogyric, isodesmic, hypohomodesmotic, homodesmotic, and hyperhomodesmotic reaction classes. We also use a test set of 14 Die Is Alder reactions, six atomization energies (AE6), 38 hydrocarbon atomization energies, and 100 reaction barrier heights (DBH24, HT-BH38, and NHT-BH38). For noncovalent complexes, we use the NCCE31 and S22 test sets. To test the intramolecular interactions, we use a set of alkane, cysteine, phenylalanine-glycine-glycine tripeptide, and monosaccharide conformers. We also discuss the delocalization and static correlation errors. We show that a universally accurate description of chemical properties can be provided by a large, 75% exact exchange mixing both in the calculation of the reference orbitals and the final energy.
机译:直接随机相位近似(dRPA)与Kohn-Sham参考轨道的组合是计算化学中最有希望的工具之一,可应用于化学和物理学的许多领域。这是因为它随系统大小而缩放为N-4,这比准确的从头算起波函数方法(如标准耦合簇)要大得多。与标准的密度泛函理论方法相比,dRPA还可以对热力学和电子性质进行更为准确的描述。即使在带隙很小或消失的大型系统中,它也能描述出很强的静态电子相关效应,而普通的单参比方法却没有。但是,dRPA由于其自相关误差而具有一些缺陷。为了获得准确和精确的反应能,势垒以及非共价分子内和分子间相互作用,我们构建了新的双杂化dRPA(杂化了能量和轨道中的精确和半局部交换)并测试了这种新功能的性能等速,等渗,低同渗,同渗和超同渗反应类别。我们还使用了14个Die Is Alder反应,六个雾化能量(AE6),38个烃雾化能量和100个反应势垒高度(DBH24,HT-BH38和NHT-BH38)的测试集。对于非共价复合物,我们使用NCCE31和S22测试集。为了测试分子内的相互作用,我们使用了一组烷烃,半胱氨酸,苯丙氨酸-甘氨酸-甘氨酸三肽和单糖构象体。我们还将讨论离域和静态相关误差。我们表明,在参考轨道的计算和最终能量的计算中,可以通过进行75%的精确交换混合来对化学性质进行普遍准确的描述。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号