首页> 外文期刊>Journal of chemical theory and computation: JCTC >MTS-MD of Biomolecules Steered with 3D-RISM-KH Mean Solvation Forces Accelerated with Generalized Solvation Force Extrapolation
【24h】

MTS-MD of Biomolecules Steered with 3D-RISM-KH Mean Solvation Forces Accelerated with Generalized Solvation Force Extrapolation

机译:利用3D-RISM-KH指导的生物分子的MTS-MD通过广义溶剂化外推法加速平均溶剂化力

获取原文
获取原文并翻译 | 示例
           

摘要

We developed a generalized solvation force extrapolation (GSFE) approach to speed up multiple time step molecular dynamics (MTS-MD) of biomolecules steered with mean solvation forces obtained from the 3D-RISM-KH molecular theory of solvation (three-dimensional reference interaction site model with the Kovalenko-Hirata closure). GSFE is based on a set of techniques including the non-Eckart-like transformation of coordinate space separately for each solute atom, extension of the force-coordinate pair basis set followed by selection of the best subset, balancing the normal equations by modified least-squares minimization of deviations, and incremental increase of outer time step in motion integration. Mean solvation forces acting on the biomolecule atoms in conformations at successive inner time steps are extrapolated using a relatively small number of best (closest) solute atomic coordinates and corresponding mean solvation forces obtained at previous outer time steps by converging the 3D-RISM-KH integral equations. The MTS-MD evolution steered with GSFE of 3D-RISM-KH mean solvation forces is efficiently stabilized with our optimized isokinetic Nose-Hoover chain (OIN) thermostat. We validated the hybrid MTS-MD/OIN/GSFE/3D-RISM-KH integrator on solvated organic and biomolecules of different stiffness and complexity: asphaltene dimer in toluene solvent, hydrated alanine dipeptide, miniprotein 1L2Y, and protein G. The GSFE accuracy and the OIN efficiency allowed us to enlarge outer time steps up to huge values of 1-4 ps while accurately reproducing conformational properties. Quasidynamics steered with 3D-RISM-KH mean solvation forces achieves time scale compression of conformational changes coupled with solvent exchange, resulting in further significant acceleration of protein conformational sampling with respect to real time dynamics. Overall, this provided a 50- to 1000-fold effective speedup of conformational sampling for these systems, compared to conventional MD with explicit solvent. We have been able to fold the miniprotein from a fully denatured, extended state in about 60 ns of quasidynamics steered with 3D-RISM-KH mean solvation forces, compared to the average physical folding time of 4-9 mu s observed in experiment.
机译:我们开发了一种广义的溶剂化力外推(GSFE)方法来加快生物分子的多时间步分子动力学(MTS-MD),该分子利用从3D-RISM-KH溶剂化分子理论(三维参考相互作用部位)获得的平均溶剂化力进行控制Kovalenko-Hirata闭合的模型)。 GSFE基于一套技术,包括分别为每个溶质原子进行非Eckart式坐标空间变换,扩展力-坐标对基础集,然后选择最佳子集,通过修改最小二乘法平衡法线方程。最小化偏差平方,并增加运动积分中外部时间步长的增量。使用相对较少的最佳(最接近)溶质原子坐标和在先前的外部时间步长通过收敛3D-RISM-KH积分获得的相应平均溶剂化力,推断在连续的内部时间步长上按构象作用于生物分子原子的平均溶剂化力方程。通过我们优化的等速鼻-胡佛链(OIN)温控器,有效稳定了由3D-RISM-KH的GSFE操纵的MTS-MD演变。我们验证了混合MTS-MD / OIN / GSFE / 3D-RISM-KH混合积分仪在不同硬度和复杂度的溶剂化有机和生物分子上的作用:甲苯溶剂中的沥青质二聚体,水合丙氨酸二肽,小蛋白1L2Y和蛋白G。GSFE的准确性和准确性OIN效率使我们可以将外部时间步长扩大到1-4 ps的巨大值,同时可以精确地复制构象特性。利用3D-RISM-KH平均溶剂化力控制的准动力学实现了构象变化的时标压缩以及溶剂交换,从而在实时动力学方面进一步显着加速了蛋白质构象采样。总体而言,与使用显式溶剂的常规MD相比,这些系统的构象采样有效加速了50到1000倍。与实验中观察到的平均物理折叠时间4-9μs相比,我们已经能够在大约3 ns的准动力学作用下,通过3D-RISM-KH平均溶剂化力操纵的完全变性,延伸状态折叠微蛋白。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号