首页> 外文期刊>Journal of chemical theory and computation: JCTC >Density Relaxation in Time-Dependent Density Functional Theory: Combining Relaxed Density Natural Orbitals and Multireference Perturbation Theories for an Improved Description of Excited States
【24h】

Density Relaxation in Time-Dependent Density Functional Theory: Combining Relaxed Density Natural Orbitals and Multireference Perturbation Theories for an Improved Description of Excited States

机译:随时间变化的密度泛函理论中的密度弛豫:结合弛豫密度自然轨道和多参考摄动理论,对激发态进行改进描述

获取原文
获取原文并翻译 | 示例
           

摘要

Making use of the recently developed excited state charge displacement analysis [E. Ronca et al., J. Chem. Phys. 140, 054110 (2014)], suited to quantitatively characterize the charge fluxes coming along an electronic excitation, we investigate the role of the density relaxation effects in the overall description of electronically excited states of different nature, namely, valence, ionic, and charge transfer (CT), considering a large set of prototypical small and medium-sized molecular systems. By comparing the response densities provided by time-dependent density functional theory (TDDFT) and the corresponding relaxed densities obtained by applying the Z-vector postlinear-response approach [N. C. Handy and H. F. Schaefer, /. Chem. Phys. 81, 5031 (1984)] with those obtained by highly correlated state-of-the-art wave function calculations, we show that the inclusion of the relaxation effects is imperative to get an accurate description of the considered excited states. We also examine what happens at the quality of the response function when an increasing amount of Hartree—Fock (HF) exchange is included in the functional, showing that the usually improved excitation energies in the case of CT states are not always the consequence of an improved description of their overall properties. Remarkably, we find that the relaxation of the response densities is always able to reproduce, independently of the extent of HF exchange in the functional, the benchmark wave function densities. Finally, we propose a novel and computationally convenient strategy, based on the use of the natural orbitals derived from the relaxed TDDFT density to build zero-order wave function for multireference perturbation theory calculations. For a significant set of different excited states, the proposed approach provided accurate excitation energies, comparable to those obtained by computationally demanding ab initio calculations.
机译:利用最近开发的激发态电荷位移分析[E。 Ronca等人,《化学杂志》物理140,054110(2014)],以定量表征沿着电子激发的电荷通量,我们研究了密度弛豫效应在不同性质的电子激发态(价,离子和电荷)的整体描述中的作用转移(CT),要考虑大量原型的中小型分子系统。通过比较由时变密度泛函理论(TDDFT)提供的响应密度和通过应用Z向量后线性响应方法[N. C.Handy和H.F.Schaefer,/。化学物理81,5031(1984)]与通过高度相关的最新波函数计算获得的结果表明,必须包括松弛效应才能对所考虑的激发态进行准确描述。我们还研究了当功能中包含越来越多的Hartree-Fock(HF)交换时,响应函数的质量会发生什么,这表明在CT状态下通常改善的激发能并不总是因改进了对它们总体属性的描述。值得注意的是,我们发现响应密度的弛豫总是能够重现基准波函数密度,而与功能中的HF交换程度无关。最后,我们提出了一种新颖且计算方便的策略,该策略基于使用从松弛TDDFT密度导出的自然轨道来建立零阶波动函数,以进行多参考扰动理论计算。对于大量不同的激发态,所提出的方法提供了精确的激发能量,与通过计算要求从头算得到的能量相当。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号