首页> 外文期刊>Journal of chemical theory and computation: JCTC >A Fast and Robust Poisson-Boltzmann Solver Based on Adaptive Cartesian Grids
【24h】

A Fast and Robust Poisson-Boltzmann Solver Based on Adaptive Cartesian Grids

机译:基于自适应笛卡尔网格的快速鲁棒Poisson-Boltzmann解算器

获取原文
获取原文并翻译 | 示例
           

摘要

An adaptive Cartesian grid (ACG) concept is presented for the fast and robust numerical solution of the 3D Poisson-Boltzmann equation (PBE) governing the electrostatic interactions of large-scale biomolecules and highly charged biomolecularassemblies such as ribosomes and viruses. The ACG offers numerous advantages over competing grid topologies such as regular3D lattices and unstructured grids. For very large biological molecules and their assemblies, the total number of grid pointsis several orders of magnitude less than that required in a conventional lattice grid used in the current PBE solvers, thusallowing the end user to obtain accurate and stable nonlinear PBE solutions on a desktop computer. Compared to tetrahedral-based unstructured grids, ACG offers a simpler hierarchical grid structure, which is naturally suited to multigrid, relievesindirect addressing requirements, and uses fewer neighboring nodes in the finite difference stencils. Construction of the ACGand determination of the dielectric/ionic maps are straightforward and fast and require minimal user intervention. Chargesingularities are eliminated by reformulating the problem to produce the reaction field potential in the molecular interiorand the total electrostatic potential in the exterior ionic solvent region. This approach minimizes grid dependency andalleviates the need for fine grid spacing near atomic charge sites. The technical portion of this paper contains three parts.First, the ACG and its construction for general biomolecular geometries are described. Next, a discrete approximation to thePBE upon this mesh is derived. Finally, the overall solution procedure and multigrid implementation are summarized. Resultsobtained with the ACG-based PBE solver are presented for (i) a low dielectric spherical cavity, containing interior pointcharges, embedded in a high dielectric ionic solvent-analytical solutions are available for this case, thus allowing rigorousassessment of the solution accuracy; (ii) a pair of low dielectric charged spheres embedded in an ionic solvent to computeelectrostatic interaction free energies as a function of the distance between sphere centers; (iii) surface potentials ofproteins, nucleic acids, and their larger-scale assemblies such as ribosomes; and (iv) electrostatic solvation free energiesand their salt sensitivities-obtained with both linear and nonlinear Poisson-Boltzmann equations-for a large set of proteins.These latter results along with timings can serve as benchmarks for comparing the performance of different PBE solvers.
机译:提出了一种自适应笛卡尔网格(ACG)概念,用于快速,鲁棒的3D Poisson-Boltzmann方程(PBE)数值解决方案,该方程可控制大规模生物分子和诸如核糖体和病毒等高电荷生物分子组件的静电相互作用。与竞争性网格拓扑(例如规则3D网格和非结构化网格)相比,ACG具有许多优势。对于非常大的生物分子及其装配体,网格点的总数比当前PBE求解器中使用的常规格子网格所需的网格点数少几个数量级,因此最终用户可以在台式机上获得准确且稳定的非线性PBE解决方案电脑。与基于四面体的非结构化网格相比,ACG提供了一种更简单的分层网格结构,该结构自然适用于多网格,减轻了间接寻址的要求,并且在有限差分模板中使用的相邻节点更少。 ACG的构建以及介电/离子图的确定非常简单快捷,并且需要最少的用户干预。通过重新构造问题以在分子内部产生反应场电势并在外部离子溶剂区域产生总静电电势,消除了电荷奇异性。这种方法最大程度地减少了对网格的依赖性,并减轻了在原子电荷位点附近对精细网格间距的需求。本文的技术部分包括三个部分。首先,描述了ACG及其对于一般生物分子几何结构的构造。接下来,推导该网格上对PBE的离散近似。最后,总结了整体解决方案流程和多网格实现。提出了使用基于ACG的PBE求解器获得的结果:(i)在这种情况下,可以使用嵌入高电介质离子溶剂分析溶液中的包含内部点电荷的低电介质球形腔体,从而可以严格评估溶液的准确性; (ii)嵌入离子溶剂中的一对低介电电荷球,以计算静电相互作用的自由能,该自由能是球中心之间的距离的函数; (iii)蛋白质,核酸及其大规模装配体(如核糖体)的表面电势; (iv)通过线性和非线性Poisson-Boltzmann方程获得的大量蛋白质的静电溶剂化自由能及其盐敏感性-后一结果和时间可以用作比较不同PBE求解器性能的基准。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号