首页> 外文期刊>Journal of chemical theory and computation: JCTC >Polarizable Atomic Multipole-Based AMOEBA Force Field for Proteins
【24h】

Polarizable Atomic Multipole-Based AMOEBA Force Field for Proteins

机译:基于极化多原子原子的AMOEBA蛋白质力场

获取原文
获取原文并翻译 | 示例
           

摘要

Development of the AMOEBA (atomic multi-pole optimized energetics for biomolecular simulation) force field for proteins is presented. The current version (AMOEBA-2013) utilizes permanent electrostatic multipole moments through the quadrupole at each atom, and explicitly treats polarization effects in various chemical and physical environments. The atomic multipole electrostatic parameters for each amino acid residue type are derived from high-level gas phase quantum mechanical calculations via a consistent and extensible protocol. Molecular polarizability is modeled via a Thole-style damped interactive induction model based upon distributed atomic polarizabilities. Inter- and intramolecular polarization is treated in a consistent fashion via the Thole model. The intramolecular polarization model ensures transferability of electrostatic parameters among different conformations, as demonstrated by the agreement between QM and AMOEBA electrostatic potentials, and dipole moments of dipeptides. The backbone and side chain torsional parameters were determined by comparing to gas-phase QM (RI-TRIM MP2/CBS) conformational energies of dipeptides and to statistical distributions from the Protein Data Bank. Molecular dynamics simulations are reported for short peptides in explicit water to examine their conformational properties in solution. Overall the calculated conformational free energies and /-coupling constants are consistent with PDB statistics and experimental NMR results, respectively. In addition, the experimental crystal structures of a number of proteins are well maintained during molecular dynamics (MD) simulation. While further calculations are necessary to folly validate the force field, initial results suggest the AMOEBA polarizable multipole force field is able to describe the structure and energetics of peptides and proteins, in both gas-phase and solution environments.
机译:介绍了蛋白质的AMOEBA(用于生物分子模拟的原子多极优化能量学)力场的开发。当前版本(AMOEBA-2013)在每个原子上利用通过四极的永久静电多极矩,并明确处理各种化学和物理环境中的极化效应。每种氨基酸残基类型的原子多极静电参数均通过一致且可扩展的协议从高级气相量子力学计算中得出。分子极化率通过基于分布原子极化率的Thole型阻尼交互式感应模型进行建模。分子间和分子内极化通过Thole模型以一致的方式处理。分子内极化模型可确保静电参数在不同构象之间的可传递性,如QM和AMOEBA静电势以及二肽的偶极矩之间的一致性所证明。通过比较二肽的气相QM(RI-TRIM MP2 / CBS)构象能和Protein Data Bank的统计分布来确定主链和侧链扭转参数。据报道,在清澈的水中对短肽进行了分子动力学模拟,以检查它们在溶液中的构象特性。总体而言,所计算的构象自由能和I-耦合常数分别与PDB统计数据和实验NMR结果一致。此外,在分子动力学(MD)模拟过程中,许多蛋白质的实验晶体结构得到了很好的维护。尽管需要进行进一步的计算才能完全验证力场,但初步结果表明,AMOEBA可极化的多极力场能够在气相和溶液环境中描述肽和蛋白质的结构和能量。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号