首页> 外文期刊>Journal of chemical theory and computation: JCTC >An Atomic-Orbital-Based Lagrangian Approach for Calculating Geometric Gradients of Linear Response Properties
【24h】

An Atomic-Orbital-Based Lagrangian Approach for Calculating Geometric Gradients of Linear Response Properties

机译:基于原子轨道的拉格朗日方法来计算线性响应特性的几何梯度

获取原文
获取原文并翻译 | 示例
           

摘要

We present a Lagrangian approach for the calculation of molecular (quadratic) response properties that can be expressed as geometric gradients of a generic linear response function, its poles, and its residues. The approach is implemented within an atomic-orbital-based formalism suitable for linear scaling at the level of self-consistent time-dependent Hartree-Fock and density functional theory. Among the properties that can be obtained using this formalism are the gradient of the frequency-dependent polarizability (e.g., Raman intensities) and that of the one-photon transition dipole moment (entering the Herzberg-Teller factors), in addition to the excited-state molecular forces required for excited-state geometry optimizations. Geometric derivatives of ground-state first-order properties (e.g., IR intensities) and excited-state first-order property expressions are also reported as byproducts of our implementation. The one-photon transition moment gradient is the first analytic implementation of the one-photon transition moment derivative at the DFT level of theory. Besides offering a simple solution to overcome phase (hence, sign) uncertainties connected to the determination of the Herzberg-Teller corrections by numerical derivatives techniques based on independent calculations, our approach also opens the possibility to determine, for example by a mixed analytic-numerical approach, the one-photon transition dipole Hessian, and thus to investigate vibronic effects beyond the linear Herzberg-Teller approximation. As an illustrative application, we report a DFT study of the vibronic fine structure of the one-photon X(~1A_(1g)) - A(~1B_(2u)) transition in the absorption spectrum of benzene, which is Franck-Condon-forbidden in the electric dipole approximation and hence determined by the Herzberg-Teller integrals and electronic transition dipole-moment derivatives.
机译:我们提出了一种拉格朗日方法,用于计算分子(二次)响应特性,该特性可以表示为通用线性响应函数,其极点和残基的几何梯度。该方法是在基于原子轨道的形式论中实现的,该形式论适合于在自洽时间相关的Hartree-Fock和密度泛函理论的水平上进行线性缩放。使用这种形式主义可以获得的特性中,除了受激能级之外,还有频率相关的极化率(例如拉曼强度)和单光子跃迁偶极矩(输入赫兹伯格-泰勒因子)的梯度。激发态几何优化所需的分子态力。基态一阶特性(例如IR强度)和激发态一阶特性表达式的几何导数也被报告为我们实施的副产品。单光子跃迁矩梯度是在DFT理论水平上对单光子跃迁矩导数的第一个解析实现。除了提供一种简单的解决方案来克服与基于独立计算的数值导数技术确定Herzberg-Teller校正有关的相位(因此,符号)不确定性之外,我们的方法还提供了例如通过混合解析数字确定的可能性。方法是单光子跃迁偶极子Hessian,从而研究线性Herzberg-Teller近似之外的振动效应。作为说明性应用,我们报告了苯吸收光谱中单光子X(〜1A_(1g))-A(〜1B_(2u))跃迁的振动精细结构的DFT研究,这是弗兰克·康登(Franck-Condon) -在电偶极子近似中是禁止的,因此由Herzberg-Teller积分和电子跃迁偶极矩导数确定。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号