...
首页> 外文期刊>Journal of chemical theory and computation: JCTC >QM/MM Studies on the β-Galactosidase Catalytic Mechanism: Hydrolysis and Transglycosylation Reactions
【24h】

QM/MM Studies on the β-Galactosidase Catalytic Mechanism: Hydrolysis and Transglycosylation Reactions

机译:QM / MM研究β-半乳糖苷酶的催化机理:水解和转糖基化反应

获取原文
获取原文并翻译 | 示例
           

摘要

Carbohydrates perform a wide range of crucial functions in biological systems and are of great interest for the food and pharmaceutical industries. β-Galactosidase from Escherichia coli catalyzes both the hydrolytic breaking of the very stable glycosidic bond of lactose and a series of transglycosylation reactions. These reactions are crucial for the development of new carbohydrate molecules, as well as the optimization of their syntheses. In this work we have used computational methods to study the catalytic mechanism of hydrolysis and a set of distinct transglycosylation reactions of a retaining galactosidase, with atomic detail, with lactose as the natural substrate. The ONIOM method (BB1K:AMBER//B3LYP:AMBER calculations) was employed to address such a large enzymatic system. Such a methodology can efficiently account for the stereochemistry of the reactive residues, as well as the long-range enzyme-substrate interactions. The possible importance of the magnesium ion in the catalytic reaction was investigated, and it was found that, indeed, the magnesium ion catalyzes the transformation, lowering the activation barrier by 14.9 kcal/mol. The calculations indicate that the formation of β(1-3) glycosidic linkages is thermodynamically very unfavorable. In contrast, the formation of β(1 -6) glycosidic bonds is the most favored, in complete agreement with the enantioselectivity observed experimentally. The data also clearly show the importance of the enzyme scaffold beyond the first-shell amino acids in the stabilization of the transition states. It is fundamental to include the enzyme explicitly in computational studies.
机译:碳水化合物在生物系统中起着广泛的关键作用,并且对食品和制药行业非常感兴趣。来自大肠杆菌的β-半乳糖苷酶既催化乳糖非常稳定的糖苷键的水解断裂,又催化一系列转糖基化反应。这些反应对于开发新的碳水化合物分子以及优化其合成至关重要。在这项工作中,我们使用了计算方法来研究水解的催化机理以及保留的半乳糖苷酶的一系列独特的转糖基化反应,其中原子细节以乳糖为天然底物。 ONIOM方法(BB1K:AMBER // B3LYP:AMBER计算)用​​于解决如此庞大的酶系统。这样的方法可以有效地说明反应性残基的立体化学,以及长距离的酶-底物相互作用。研究了镁离子在催化反应中的可能重要性,发现镁离子确实催化了转化,将活化能垒降低了14.9 kcal / mol。计算表明,β(1-3)糖苷键的形成在热力学上是非常不利的。相比之下,β(1 -6)糖苷键的形成是最受青睐的,与实验观察到的对映选择性完全一致。数据还清楚地表明,在稳定过渡态中,除了第一壳氨基酸外,酶支架的重要性。在计算研究中明确包括酶是基本的。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号