首页> 外文期刊>Journal of chemical theory and computation: JCTC >Infrared Spectroscopy of Fluxional Molecules from (ab Initio) Molecular Dynamics: Resolving Large-Amplitude Motion, Multiple Conformations, and Permutational Symmetries
【24h】

Infrared Spectroscopy of Fluxional Molecules from (ab Initio) Molecular Dynamics: Resolving Large-Amplitude Motion, Multiple Conformations, and Permutational Symmetries

机译:(从头算)分子动力学的通量分子的红外光谱:解决大振幅运动,多种构象和排列对称性。

获取原文
获取原文并翻译 | 示例
           

摘要

The computation of vibrational spectra of complex molecules from time correlation functions generated by ab initio , molecular dynamics simulations has made lively progress in recent years. However, the analysis of such spectra, i.e., the assignment of vibrational bands to atomic motions, is by no means straightforward. In a recent article [J. Chem. Theory Comput. 2011, 7, 2028-2039], Mathias and Baer presented a corresponding analysis method that derives generalized normal coordinates (GNCs) from molecular dynamics trajectories, which furnish band positions, band shapes, and infrared intensities of the separated vibrational modes. This vibrational analysis technique relies on the usual quasi-rigidity assumption; i.e., atomic motions are described by small Oscillations around a single reference structure. This assumption, however, breaks down if the molecule undergoes large-amplitude motion and visits different conformations along the trajectory or if the same conformation can be adopted by a different ordering of the atoms, i.e., if permutational symmetries have to be considered. Here, we present an extension of the GNC method that handles such cases by considering multiple reference structures, both for different conformations and for permutational symmetries. By introducing a projection technique and computing probabilities that assign the time frames of the trajectories to these reference structures, the vibrational spectra are split into conformational contributions via a consistent time correlation formalism. For each conformation, the permutational symmetries are resolved, which permits one to determine conformation-local GNCs for the band assignment. The working principle and the virtues of this generalization are demonstrated for the simple case of a methyl group rotation. This is followed by an application to a more intricate case: Upon replacing one proton by a deuteron in protonated methane, CH_S~+, significant changes of its infrared spectrum have been observed since the CH4D~+ isotopologue features five different isotopomers. Here, a total of 120 conformational and permutational references are required in the projection scheme in order to capture the frequent and versatile structural transitions of this small but utmost floppy molecule and to assign its infrared spectrum. The extended GNC method is general. Thus, it can be applied readily to systems that require more than one reference structure, and it can be transferred to other theoretical spectroscopies that are formulated in terms of time correlation functions.
机译:从头开始产生的时间相关函数,分子动力学模拟计算复杂分子的振动光谱,近年来取得了积极的进展。但是,这种光谱的分析,即将振动带分配给原子运动,绝非易事。在最近的一篇文章中[J.化学理论计算。 [2011,7,2028-2039],Mathias和Baer提出了一种相应的分析方法,该方法从分子动力学轨迹推导广义法向坐标(GNC),提供了分离的振动模式的能带位置,能带形状和红外强度。这种振动分析技术依赖于通常的准刚性假设。即原子运动由围绕单个参考结构的小振荡描述。但是,如果分子经历大幅度运动并沿着轨迹走不同的构象,或者如果不同的原子序可以采用相同的构象,即必须考虑排列对称性,则这种假设就会破裂。在这里,我们提出了GNC方法的扩展,该方法通过考虑针对不同构象和置换对称性的多个参考结构来处理此类情况。通过引入投影技术并计算将轨迹的时间框架分配给这些参考结构的概率,振动谱将通过一致的时间相关形式被划分为构象贡献。对于每个构象,解决了排列对称性,这使人们可以确定用于频带分配的构象局部GNC。对于甲基旋转的简单情况,证明了这种概括的工作原理和优点。然后将其应用于更复杂的情况:在质子化甲烷CH_S〜+中用氘核取代一个质子后,由于CH4D〜+同位素异构体具有五种不同的同位素异构体,因此观察到了其红外光谱的显着变化。在这里,在投影方案中总共需要120个构象和排列参考,以捕获这种小但最大的松散分子的频繁且通用的结构转变,并为其分配红外光谱。扩展的GNC方法是通用的。因此,它可以很容易地应用于需要多个参考结构的系统,并且可以转移到根据时间相关函数制定的其他理论光谱学上。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号