...
首页> 外文期刊>Journal of Cerebral Blood Flow and Metabolism: Official Journal of the International Society of Cerebral Blood Flow and Metabolism >Anoxic and ischemic injury of myelinated axons in CNS white matter: from mechanistic concepts to therapeutics.
【24h】

Anoxic and ischemic injury of myelinated axons in CNS white matter: from mechanistic concepts to therapeutics.

机译:中枢神经系统白质中髓鞘轴突的缺氧和缺血性损伤:从机制概念到治疗方法。

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

White matter of the brain and spinal cord is susceptible to anoxia and ischemia. Irreversible injury to this tissue can have serious consequences for the overall function of the CNS through disruption of signal transmission. Myelinated axons of the CNS are critically dependent on a continuous supply of energy largely generated through oxidative phosphorylation. Anoxia and ischemia cause rapid energy depletion, failure of the Na(+)-K(+)-ATPase, and accumulation of axoplasmic Na+ through noninactivating Na+ channels, with concentrations approaching 100 mmol/L after 60 minutes of anoxia. Coupled with severe K+ depletion that results in large membrane depolarization, high [Na+]i stimulates reverse Na(+)-Ca2+ exchange and axonal Ca2+ overload. A component of Ca2+ entry occurs directly through Na+ channels. The excessive accumulation of Ca2+ in turn activates various Ca(2+)-dependent enzymes, such as calpain, phospholipases, and protein kinase C, resulting in irreversible injury. The latter enzyme may be involved in "autoprotection," triggered by release of endogenous gamma-aminobutyric acid and adenosine, by modulation of certain elements responsible for deregulation of ion homeostasis. Glycolytic block, in contrast to anoxia alone, appears to preferentially mobilize internal Ca2+ stores; as control of internal Ca2+ pools is lost, excessive release from this compartment may itself contribute to axonal damage. Reoxygenation paradoxically accelerates injury in many axons, possibly as a result of severe mitochondrial Ca2+ overload leading to a secondary failure of respiration. Although glia are relatively resistant to anoxia, oligodendrocytes and the myelin sheath may be damaged by glutamate released by reverse Na(+)-glutamate transport. Use-dependent Na+ channel blockers, particularly charged compounds such as QX-314, are highly neuroprotective in vitro, but only agents that exist partially in a neutral form, such as mexiletine and tocainide, are effective after systemic administration, because charged species cannot penetrate the blood-brain barrier easily. These concepts may also apply to other white matter disorders, such as spinal cord injury or diffuse axonal injury in brain trauma. Moreover, whereas many events are unique to white matter injury, a number of steps are common to both gray and white matter anoxia and ischemia. Optimal protection of the CNS as a whole will therefore require combination therapy aimed at unique steps in gray and white matter regions, or intervention at common points in the injury cascades.
机译:脑和脊髓的白质易患缺氧和局部缺血。通过中断信号传输,对该组织的不可逆损伤可能对CNS的整体功能产生严重后果。中枢神经系统的髓鞘轴突严重依赖于主要通过氧化磷酸化产生的能量的连续供应。缺氧和局部缺血会导致能量快速耗竭,Na(+)-K(+)-ATPase失效以及通过非失活的Na +通道积累无定形的Na +,其缺氧60分钟后浓度接近100 mmol / L。加上严重的K +耗竭导致大的膜去极化,高[Na +] i刺激反向Na(+)-Ca2 +交换和轴突Ca2 +超载。 Ca 2+进入的成分直接通过Na +通道发生。 Ca2 +的过度积累反过来又激活了各种Ca(2+)依赖性酶,例如钙蛋白酶,磷脂酶和蛋白激酶C,导致不可逆的伤害。后一种酶可能参与“自动保护”,通过调节负责使离子体内平衡失调的某些元素,由内源性γ-氨基丁酸和腺苷的释放触发。与单独的缺氧相反,糖酵解阻滞似乎优先动员了内部Ca2 +的储存。由于失去对内部Ca2 +池的控制,因此从该隔室中过度释放本身可能会造成轴突损伤。复氧反常地加速了许多轴突的损伤,这可能是由于严重的线粒体Ca2 +超载导致了继发性呼吸衰竭。尽管神经胶质细胞对缺氧有相对的抵抗力,但少胶质细胞和髓鞘可能会受到Na(+)-谷氨酸逆向转运释放的谷氨酸的破坏。依赖用途的Na +通道阻滞剂,特别是带电荷的化合物(例如QX-314)在体外具有高度的神经保护作用,但由于全身性给药后,由于带电荷的物质无法渗透,因此在全身性给药后,只有部分以中性形式存在的药物(例如美西律和托卡尼特)才有效。容易造成血脑屏障。这些概念也可能适用于其他白质疾病,例如脊髓损伤或脑外伤中的弥漫性轴索损伤。此外,尽管许多事件是白质损伤所独有的,但许多步骤对于灰质和白质缺氧和局部缺血是共同的。因此,要对CNS整体进行最佳保护,就需要针对灰质和白质区域中独特步骤的联合治疗,或者在损伤级联的共同点进行干预。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号