...
【24h】

Hydrophobic surface modification of ramie fibers by plasma-induced addition polymerization of propylene

机译:等离子体诱导的丙烯加成聚合对麻纤维的疏水表面改性

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

The low affinity between hydrophilic cellulose fibers and hydrophobic matrices leads to poor interfacial bonding, reducing the mechanical performances of natural cellulose fiber-reinforced composites. This study illustrates plasma-induced addition polymerization of propylene to create a hydrophobic surface on ramie fibers for enhancing their bonding with polypropylene (PP). Plasma treatment with propane is applied for comparison. The advancing contact angles of the plasma-treated ramie fibers are raised from 66.3 degrees to 106.1 degrees and the interfacial shear strengths with PP are enhanced up to 36.4%, likely resulted from the increase in fiber surface roughness observed under a scanning electron microscope and the introduction of plasma-grafted PP and alkyl groups on fibers surfaces proven by X-ray photoelectron spectroscopy. It is also revealed that plasma treatment with propylene is highly effective in increasing surface carbon content (from 68.3% to 82.4% in 0.5min) and more efficient than the treatment with propane, though both plasma treatments show substantial modification efficacies to the fiber surfaces. The treatment duration affects surface roughness more than surface chemical composition, and the optimized treatment time is around 1min. The modification method developed in this research has the potential to be used for surface modification of fibers for many applications.
机译:亲水性纤维素纤维与疏水性基质之间的低亲和力导致不良的界面粘合,从而降低了天然纤维素纤维增强复合材料的机械性能。这项研究说明了等离子体诱导的丙烯加成聚合,从而在麻纤维上形成疏水表面,从而增强了它们与聚丙烯(PP)的结合力。将丙烷进行等离子体处理用于比较。经过等离子体处理的麻纤维的前进接触角从66.3度提高到106.1度,与PP的界面剪切强度提高了36.4%,这可能是由于在扫描电子显微镜和扫描电镜下观察到的纤维表面粗糙度增加所致。 X射线光电子能谱证明,在纤维表面引入了等离子体接枝的PP和烷基。还揭示了用丙烯进行的等离子体处理在增加表面碳含量方面非常有效(在0.5分钟内从68.3%增至82.4%),并且比用丙烷处理更有效,尽管两种等离子体处理均显示出对纤维表面的显着改性效果。处理持续时间对表面粗糙度的影响大于表面化学成分,并且优化的处理时间约为1分钟。在这项研究中开发的改性方法具有用于许多应用的纤维表面改性的潜力。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号