首页> 美国卫生研究院文献>other >Surface Modification of a Titanium Alloy with a Phospholipid Polymer Prepared by a Plasma-Induced Grafting Technique to Improve Surface Thromboresistance
【2h】

Surface Modification of a Titanium Alloy with a Phospholipid Polymer Prepared by a Plasma-Induced Grafting Technique to Improve Surface Thromboresistance

机译:通过等离子体诱导的嫁接技术制备磷脂聚合物的钛合金的表面改性以改善表面血栓钻性能

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

To improve the thromboresistance of a titanium alloy (TiAl6V4) surface which is currently utilized in several ventricular assist devices (VADs), a plasma-induced graft polymerization of 2-methacryloyloxyethyl phosphorylcholine (MPC) was carried out and poly(MPC) (PMPC) chains were covalently attached onto a TiAl6V4 surface by a plasma induced technique. Cleaned TiAl6V4 surfaces were pretreated with H2O-vapor-plasma and silanated with 3-methacryloylpropyltrimethoxysilane (MPS). Next, a plasma-induced graft polymerization with MPC was performed after the surfaces were pretreated with Ar plasma. Surface compositions were verified by X-ray photoelectron spectroscopy (XPS). In vitro blood biocompatibility was evaluated by contacting the modified surfaces with ovine blood under continuous mixing. Bulk phase platelet activation was quantified by flow cytometric analysis, and surfaces were observed with scanning electron microscopy after blood contact. XPS data demonstrated successful modification of the TiAl6V4 surfaces with PMPC as evidenced by increased N and P on modified surfaces. Platelet deposition was markedly reduced on the PMPC grafted surfaces and platelet activation in blood that contacted the PMPC-grafted samples was significantly reduced relative to the unmodified TiAl6V4 and polystyrene control surfaces. Durability studies under continuously mixed water suggested no change in surface modification over a one month period. This modification strategy shows promise for further investigation as a means to reduce the thromboembolic risk associated with the metallic blood-contacting surfaces of VADs and other cardiovascular devices under development.

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号