...
【24h】

Spherical Nanoparticle-Substrate Adhesion Interaction Simulations Utilizing Molecular Dynamics

机译:利用分子动力学的球形纳米颗粒-基质粘附相互作用模拟

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

From a molecular perspective, the fundamental rolling and sliding elasto-adhesion interactions between a spherical nano-particle and an elastic substrate is studied using a computational technique based on the Molecular Dynamics (MD) approach. Initially, the particle and the substrate were equilibrated individually at 300 K. The covalent bonds interactions between the atoms of the nanoparticle are modeled by constraining the atoms to stay together throughout the simulation. The temperature of the substrate atoms is regulated by periodically scaling to mimic the bulk substrate effect to minimize the effects of the finite substrate size. The intermolecular interaction between the particle and the substrate is defined by the Lennard-Jones (LJ) 12-6 potential. The total force-displacement curves of the 4.2 and 7.89 nm particles in the cases of particle being pushed normally towards the substrate and the particle pushed tangentially, while in adhesion with substrate, are obtained. The rolling resistance moment exhibited by the smaller nanoparticle (4.2 nm) is calculated from the force-displacement curve obtained from simulations and compared to the theoretical predictions based on a two-dimensional adhesion model. It is found that the moments as a function of the rotation angle θ are of the same order (3.646 nN nm). The rolling and sliding force-displacement profiles when the nanoparticle is subjected to tangential load are also presented.
机译:从分子角度看,使用基于分子动力学(MD)方法的计算技术研究了球形纳米颗粒与弹性基材之间的基本滚动和滑动弹性-粘附相互作用。最初,在300 K下分别平衡粒子和基质。通过限制原子在整个模拟过程中保持在一起,对纳米粒子原子之间的共价键相互作用进行建模。底物原子的温度通过周期性缩放以模仿整体底物效应来最小化有限的底物尺寸的影响。粒子与底物之间的分子间相互作用由Lennard-Jones(LJ)12-6电势定义。获得了在颗粒被正常地推向基材并且颗粒被切向地推向颗粒时(与基材粘合时)的4.2和7.89 nm颗粒的总力-位移曲线。由模拟获得的力-位移曲线计算出较小纳米颗粒(4.2 nm)的滚动阻力力矩,并将其与基于二维粘附模型的理论预测值进行比较。已经发现,作为旋转角θ的函数的力矩是相同数量级的(3.646nNnm)。还显示了当纳米颗粒受到切向载荷时的滚动力和滑动力-位移曲线。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号