首页> 外文期刊>Journal of Biomolecular NMR >Enhanced accuracy of kinetic information from CT-CPMG experiments by transverse rotating-frame spectroscopy
【24h】

Enhanced accuracy of kinetic information from CT-CPMG experiments by transverse rotating-frame spectroscopy

机译:通过横向旋转框架光谱法提高了CT-CPMG实验的动力学信息的准确性

获取原文
获取原文并翻译 | 示例
       

摘要

Micro-to-millisecond motions of proteins transmit pivotal signals for protein function. A powerful technique for the measurement of these motions is nuclear magnetic resonance spectroscopy. One of the most widely used methodologies for this purpose is the constant-time Carr-Purcell-Meiboom-Gill (CT-CPMG) relaxation dispersion experiment where kinetic and structural information can be obtained at atomic resolution. Extraction of accurate kinetics determined from CT-CPMG data requires refocusing frequencies that are much larger than the nuclei's exchange rate between states. We investigated the effect when fast processes are probed by CT-CPMG experiments via simulation and show that if the intrinsic relaxation rate (R_(2,0) ~(CT-CPMG)) is not known a priori the extraction of accurate kinetics is hindered. Errors on the order of 50 % in the exchange rate are attained when processes become fast, but are minimized to 5 % with a priori R_(2,0) ~(CT-CPMG) information. To alleviate this shortcoming, we developed an experimental scheme probing R_(2,0) ~(CT-CPMG) with large amplitude spin-lock fields, which specifically contains the intrinsic proton longitudinal Eigenrelaxation rate. Our approach was validated with ubiquitin and the Oscillatoria agardhii agglutinin (OAA). For OAA, an underestimation of 66 % in the kinetic rates was observed if R_(2,0) ~(CT-CPMG) is not included during the analysis of CT-CPMG data and result in incorrect kinetics and imprecise amplitude information. This was overcome by combining CT-CPMG with R _(2,0) ~(CT-CPMG) measured with a high power R_(1ρ) experiment. In addition, the measurement of R_(2,0) ~(CT-CPMG) removes the ambiguities in choosing between different models that describe CT-CPMG data.
机译:蛋白质的微秒级运动会传递蛋白质功能的关键信号。测量这些运动的一项强大技术是核磁共振波谱法。为此目的使用最广泛的方法之一是恒定时间Carr-Purcell-Meiboom-Gill(CT-CPMG)弛豫分散实验,在该实验中可以原子分辨率获得动力学和结构信息。从CT-CPMG数据确定的准确动力学的提取需要重聚焦频率,该频率远大于原子核在状态之间的交换率。我们通过仿真研究了CT-CPMG实验探测快速过程时的效果,并表明,如果先验未知固有弛豫率(R_(2,0)〜(CT-CPMG)),则会阻碍精确动力学的提取。当处理变得快速时,可以达到汇率错误的50%左右,但是使用先验R_(2,0)〜(CT-CPMG)信息可以将错误最小化到5%。为了缓解这一缺点,我们开发了一种实验方案,该方案探测具有大幅度自旋锁磁场的R_(2,0)〜(CT-CPMG),其中具体包含了质子的纵向本征松弛率。我们的方法已通过泛素和Oscillatoria agardhii凝集素(OAA)进行了验证。对于OAA,如果在分析CT-CPMG数据时不包括R_(2,0)〜(CT-CPMG),则会发现动力学速率低估了66%,并导致错误的动力学和不精确的振幅信息。通过将CT-CPMG与通过高功率R_(1ρ)实验测得的R _(2,0)〜(CT-CPMG)组合克服了这一问题。此外,R_(2,0)〜(CT-CPMG)的测量消除了在描述CT-CPMG数据的不同模型之间进行选择的歧义。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号