...
首页> 外文期刊>Journal of Biomechanics >Modeling the onset and propagation of trabecular bone microdamage during low-cycle fatigue.
【24h】

Modeling the onset and propagation of trabecular bone microdamage during low-cycle fatigue.

机译:模拟低周期疲劳期间小梁骨微损伤的发作和传播。

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

Relatively small amounts of microdamage have been suggested to have a major effect on the mechanical properties of bone. A significant reduction in mechanical properties (e.g. modulus) can occur even before the appearance of microcracks. This study uses a novel non-linear microdamaging finite-element (FE) algorithm to simulate the low-cycle fatigue behavior of high-density trabecular bone. We aimed to investigate if diffuse microdamage accumulation and concomitant modulus reduction, without the need for complete trabecular strut fracture, may be an underlining mechanism for low-cycle fatigue failure (defined as a 30% reduction in apparent modulus). A muCT constructed FE model was subjected to a single cycle monotonic compression test, and constant and variable amplitude loading scenarios to study the initiation and accumulation of low-cycle fatigue microdamage. Microcrack initiation was simulated using four damage criteria: 30%, 40%, 50% and 60% reduction in bone element modulus (el-MR). Evaluation of structural (apparent) damage using the four different tissue level damage criteria resulted in specimen fatigue failure at 72, 316, 969 and 1518 cycles for the 30%, 40%, 50% and 60% el-MR models, respectively. Simulations based on the 50% el-MR model were consistent with previously published experimental findings. A strong, significant non-linear, power law relationship was found between cycles to failure (N) and effective strain (Deltasigma/E(0)): N=1.394x10(-25)(Deltasigma/E(0))(-12.17), r(2)=0.97, p<0.0001. The results suggest that microdamage and microcrack propagation, without the need for complete trabecular strut fracture, are mechanisms for high-density trabecular bone failure. Furthermore, the model is consistent with previous numerical fatigue simulations indicating that microdamage to a small number of trabeculae results in relatively large specimen modulus reductions and rapid failure.
机译:已经提出相对少量的微损伤对骨的机械性能具有重大影响。即使在出现微裂纹之前,机械性能(例如模量)也会显着降低。这项研究使用一种新颖的非线性微损伤有限元(FE)算法来模拟高密度小梁骨的低周疲劳行为。我们的目的是研究是否不需要弥散的微损伤积累和伴随的模量降低,而无需完全将小梁撑杆骨折,是否可能是低周疲劳失效(表观模量降低30%)的重要机制。使用muCT构造的有限元模型进行了单周期单调压缩试验,并在恒定和可变振幅加载情况下研究了低周期疲劳微损伤的产生和累积。使用四个损伤标准模拟了微裂纹的萌生:骨元素模量(el-MR)降低了30%,40%,50%和60%。使用四种不同的组织水平损伤标准对结构(表观)损伤进行评估,分别导致30%,40%,50%和60%el-MR模型在72、316、969和1518周期的样品疲劳失效。基于50%el-MR模型的仿真与先前发表的实验结果一致。发现到失效(N)的周期与有效应变(Deltasigma / E(0))之间存在强的,重要的非线性幂定律关系:N = 1.394x10(-25)(Deltasigma / E(0))(- 12.17),r(2)= 0.97,p <0.0001。结果表明,微损伤和微裂纹扩展是不需要高密度小梁支撑骨折的,是高密度小梁骨衰竭的机制。此外,该模型与先前的数值疲劳模拟结果一致,表明对少量小梁的微损伤会导致较大的试样模量下降和快速破坏。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号