首页> 外文期刊>Journal of Biomechanics >High rate shear strain of three-dimensional neural cell cultures: a new in vitro traumatic brain injury model
【24h】

High rate shear strain of three-dimensional neural cell cultures: a new in vitro traumatic brain injury model

机译:三维神经细胞培养物的高剪切应变:新的体外脑损伤模型

获取原文
获取原文并翻译 | 示例
           

摘要

The fidelity of cell culture simulations of traumatic brain injury (TBI) that yield tolerance and mechanistic information relies on both the cellular models and mechanical insult parameters. We have designed and characterized an electro-mechanical cell shearing device in order to produce a controlled high strain rate injury (up to 0.50 strain, 30 s(-1) strain rate) that deforms three-dimensional (3-D) neural cultures (neurons or astrocytes in an extracellular matrix scaffold). Theoretical analysis revealed that these parameters generate a heterogeneous 3-D strain field throughout the cultures that is dependent on initial cell orientation within the matrix, resulting in various combinations of normal and shear strain. The ability to create a linear shear strain field over a range of input parameters was verified by tracking fluorescent microbeads in an acellular matrix during maximal displacement for a range of strains and strain rates. In addition, cell death was demonstrated in rat cortical astrocytes and neurons in response to high rate, high magnitude shear strain. Furthermore, cell response within the 3-D neuronal cultures depended on orientation, with higher predicted shear strain correlating with an increased loss of neurites, indicating that culture configuration may be an important factor in the mechanical, and hence cellular, response to traumatic insults. Collectively, these results suggest that differential responses exist within a 3-D culture subjected to mechanical insult, perhaps mimicking the in vivo environment, and that this new model can be used to investigate the complex cellular mechanisms associated with TBI. (c) 2004 Elsevier Ltd. All rights reserved.
机译:产生耐受性和机械信息的创伤性脑损伤(TBI)的细胞培养模拟的保真度依赖于细胞模型和机械损伤参数。我们设计并表征了一种机电式细胞剪切装置,以产生可控的高应变速率损伤(高达0.50应变,30 s(-1)应变速率),从而使三维(3-D)神经文化变形(神经元或星形胶质细胞在细胞外基质支架中)。理论分析表明,这些参数会在整个培养过程中产生异质的3-D应变场,这取决于基质内的初始细胞方向,从而导致正常应变和剪切应变的各种组合。通过在一系列应变和应变率的最大位移过程中跟踪无细胞基质中的荧光微珠,验证了在一系列输入参数上创建线性剪切应变场的能力。另外,在大鼠皮质星形胶质细胞和神经元中,对高速率,高剪切应变的反应表明细胞死亡。此外,3-D神经元培养物中的细胞反应取决于方向,较高的预测剪切应变与神经突的损失增加相关,表明培养物的构型可能是对创伤性损伤的机械反应(因此对细胞)反应的重要因素。总的来说,这些结果表明,在受到机械损伤(可能模仿体内环境)的3-D培养物中存在差异反应,并且该新模型可用于研究与TBI相关的复杂细胞机制。 (c)2004 Elsevier Ltd.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号