...
首页> 外文期刊>Journal of biomechanical engineering. >Static and Dynamic Error of a Biplanar Videoradiography System Using Marker-Based and Markerless Tracking Techniques
【24h】

Static and Dynamic Error of a Biplanar Videoradiography System Using Marker-Based and Markerless Tracking Techniques

机译:基于标记和无标记跟踪技术的双平面摄影系统的静态和动态误差

获取原文
获取原文并翻译 | 示例
           

摘要

The use of biplanar videoradiography technology has become increasingly popular for evaluating joint function in vivo. Two fundamentally different methods are currently employed to reconstruct 3D bone motions captured using this technology. Marker-based tracking requires at least three radio-opaque markers to be implanted in the bone of interest. Markerless tracking makes use of algorithms designed to match 3D bone shapes to biplanar videoradiography data. In order to reliably quantify in vivo bone motion, the systematic error of these tracking techniques should be evaluated. Herein, we present new markerless tracking software that makes use of modern GPU technology, describe a versatile method for quantifying the systematic error of a biplanar videoradiography motion capture system using independent gold standard instrumentation, and evaluate the systematic error of the W.M. Keck XROMM Facility's biplanar videoradiography system using both marker-based and markerless tracking algorithms under static and dynamic motion conditions. A polycarbonate flag embedded with 12 radio-opaque markers was used to evaluate the systematic error of the marker-based tracking algorithm. Three human cadaveric bones (distal femur, distal radius, and distal ulna) were used to evaluate the systematic error of the markerless tracking algorithm. The systematic error was evaluated by comparing motions to independent gold standard instrumentation. Static motions were compared to high accuracy linear and rotary stages while dynamic motions were compared to a high accuracy angular displacement transducer. Marker-based tracking was shown to effectively track motion to within 0.1 mm and 0.1 deg under static and dynamic conditions. Furthermore, the presented results indicate that marker-less tracking can be used to effectively track rapid bone motions to within 0.15 deg for the distal aspects of the femur, radius, and ulna. Both marker-based and markerless tracking techniques were in excellent agreement with the gold standard instrumentation for both static and dynamic testing protocols. Future research will employ these techniques to quantify in vivo joint motion for high-speed upper and lower extremity impacts such as jumping, landing, and hammering.
机译:在体内评估关节功能时,双平面放射照相技术的使用已变得越来越普遍。当前采用两种根本不同的方法来重建使用此技术捕获的3D骨骼运动。基于标记的跟踪需要在目标骨骼中植入至少三个不透射线的标记。无标记跟踪利用旨在将3D骨骼形状与双平面视频影像数据匹配的算法。为了可靠地量化体内骨骼运动,应评估这些跟踪技术的系统误差。在此,我们介绍了利用现代GPU技术的新型无标记跟踪软件,描述了一种使用独立的金标准仪器来量化双平面摄影运动捕捉系统的系统误差的通用方法,并评估了W.M. Keck XROMM Facility的双平面射线照相系统,在静态和动态运动条件下均使用基于标记和无标记的跟踪算法。嵌入有12个不透射线标记的聚碳酸酯标记用于评估基于标记的跟踪算法的系统误差。使用三个人的尸体骨骼(股骨远端,radius骨远端和尺骨远端)来评估无标记跟踪算法的系统误差。通过将运动与独立的金标准仪器进行比较来评估系统误差。将静态运动与高精度线性和旋转位移台进行比较,而将动态运动与高精度角位移传感器进行比较。在静态和动态条件下,基于标记的跟踪可以有效地跟踪运动到0.1毫米和0.1度以内。此外,提出的结果表明,对于股骨,radius骨和尺骨的远端,无标记跟踪可用于有效跟踪到0.15度以内的快速骨骼运动。基于标记和无标记的跟踪技术都与用于静态和动态测试协议的金标准仪器非常吻合。未来的研究将使用这些技术来量化体内关节运动对高速上下肢的撞击,例如跳跃,着陆和重击。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号