首页> 外文期刊>Journal of Biomechanics >Varying whole body vibration amplitude differentially affects tendon and ligament structural and material properties
【24h】

Varying whole body vibration amplitude differentially affects tendon and ligament structural and material properties

机译:全身振动幅度的变化会不同地影响肌腱和韧带的结构和材料特性

获取原文
获取原文并翻译 | 示例
           

摘要

Whole Body Vibration (WBV) is becoming increasingly popular for helping to maintain bone mass and strengthening muscle. Vibration regimens optimized for bone maintenance often operate at hypogravity levels (<1. G) and regimens for muscle strengthening often employ hypergravity (>1. G) vibrations. The effect of vibratory loads on tendon and ligament properties is unclear though excessive vibrations may be injurious. Our objective was to evaluate how tendon gene expression and the mechanical/histological properties of tendon and ligament were affected in response to WBV in the following groups: no vibration, low vibration (0.3. G peak-to-peak), and high vibration (2. G peak-to-peak). Rats were vibrated for 20. min a day, 5 days a week, for 5 weeks. Upon sacrifice, the medial collateral ligament (MCL), patellar tendon (PT), and the Achilles Tendon (AT) were isolated with insertion sites intact. All tissues were tensile tested to determine structural and material properties or used for histology. Patellar tendon was also subjected to quantitative RT-PCR to evaluate expression of anabolic and catabolic genes. No differences in biomechanical data between the control and the low vibration groups were found. There was evidence of significant weakness in the MCL with high vibration, but no significant effect on the PT or AT. Histology of the MCL and PT showed a hypercellular tissue response and some fiber disorganization with high vibration. High vibration caused an increase in collagen expression and a trend for an increase in IGF-1 expression suggesting a potential anabolic response to prevent tendon overuse injury.
机译:全身振动(WBV)由于有助于保持骨量和增强肌肉而变得越来越受欢迎。为骨骼维护而优化的振动方案通常在低重力水平(<1。G)下运行,而用于肌肉增强的方案通常采用超重力振动(> 1。G)。尽管过度的振动可能会造成伤害,但尚不清楚振动载荷对肌腱和韧带特性的影响。我们的目标是评估以下几组对WBV的响应如何影响肌腱基因表达以及肌腱和韧带的机械/组织学特性:无振动,低振动(0.3。G峰-峰值)和高振动( 2. G峰峰值)。大鼠每周5天每天振动20分钟,持续5周。处死后,分离内侧副韧带(MCL),pa腱(PT)和跟腱(AT),并保留完整的插入位点。对所有组织进行拉伸测试,以确定其结构和材料特性或用于组织学。 ella骨肌腱也经过定量RT-PCR评估合成代谢和分解代谢基因的表达。在对照组和低振动组之间没有发现生物力学数据的差异。有证据表明,振动较大的MCL明显较弱,但对PT或AT没有明显影响。 MCL和PT的组织学表现为高细胞组织反应和一些纤维在高振动下分解。高振动会导致胶原蛋白表达增加,而IGF-1表达也有增加趋势,这表明潜在的合成代谢反应可预防肌腱过度损伤。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号