...
首页> 外文期刊>Journal of biomechanical engineering. >Sensitivities of Medial Meniscal Motion and Deformation to Material Properties of Articular Cartilage, Meniscus and Meniscal Attachments Using Design of Experiments Methods
【24h】

Sensitivities of Medial Meniscal Motion and Deformation to Material Properties of Articular Cartilage, Meniscus and Meniscal Attachments Using Design of Experiments Methods

机译:使用实验方法设计的内侧半月板运动和变形对关节软骨,半月板和半月板附件的材料特性的敏感性

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

This study investigated the role of the material properties assumed for articular cartilage, meniscus and meniscal attachments on the fit of a finite element model (FEM) to experimental data for meniscal motion and deformation due to an anterior tibial loading of 45 N in the anterior cruciate ligament-deficient knee. Taguchi style L18 orthogonal arrays were used to identify the most significant factors for further examination. A central composite design was then employed to develop a mathematical model for predicting the fit of the FEM to the experimental data as a function of the material properties and to identify the material property selections that optimize the fit. The cartilage was modeled as isotropic elastic material, the meniscus was modeled as transversely isotropic elastic material, and meniscal horn and the peripheral attachments were modeled as noncompressive and nonlinear in tension spring elements. The ability of the FEM to reproduce the experimentally measured meniscal motion and deformation was most strongly dependent on the initial strain of the meniscal horn attachments (ε{sub}(1H)), the linear modulus of the meniscal peripheral attachments (E{sub}P) and the ratio of meniscal moduli in the circumferential and transverse directions (E{sub}θ/E{sub}R). Our study also successfully identified values for these critical material properties (ε{sub}(1H)=-5%, E{sub}P=5.6 MPa, E{sub}θ/E{sub}R=20) to minimize the error in the FEM analysis of experimental results. This study illustrates the most important material properties for future experimental studies, and suggests that modeling work of meniscus, while retaining transverse isotropy, should also focus on the potential influence of nonlinear properties and inhomogeneity.
机译:这项研究调查了假设为关节软骨,半月板和半月板附着的材料特性对有限元模型(FEM)与由于前十字交叉点前胫骨前胫骨负荷45 N引起的半月板运动和变形的实验数据拟合的作用韧带不足的膝盖。 Taguchi样式L18正交阵列用于识别最重要的因素,需要进一步检查。然后采用中央复合设计来开发数学模型,以预测FEM对实验数据的拟合度,该拟合度是材料特性的函数,并确定优化拟合的材料特性选择。软骨建模为各向同性弹性材料,弯月面建模为横向各向同性弹性材料,弯月角和外围附件建模为拉伸弹簧元件中的非压缩和非线性。 FEM再现实验测量的半月板运动和变形的能力最强烈地取决于半月板角附件的初始应变(ε{sub}(1H)),半月板周围附件的线性模量(E {sub} P)和周向和横向半月板模数比(E {sub}θ/ E {sub} R)。我们的研究还成功地确定了这些关键材料特性的值(ε{sub}(1H)=-5%,E {sub} P = 5.6 MPa,E {sub}θ/ E {sub} R = 20),以最大程度地减小了有限元分析实验结果中的误差。这项研究说明了未来实验研究中最重要的材料特性,并建议在保留横向各向同性的同时,弯月面的建模工作还应关注非线性特性和不均匀性的潜在影响。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号