...
首页> 外文期刊>Journal of biomaterials science >Development of biodegradable polyurethane scaffolds using amino acid and dipeptide-based chain extenders for soft tissue engineering
【24h】

Development of biodegradable polyurethane scaffolds using amino acid and dipeptide-based chain extenders for soft tissue engineering

机译:使用氨基酸和基于二肽的扩链剂开发可生物降解的聚氨酯支架,用于软组织工程

获取原文
获取原文并翻译 | 示例

摘要

The inherent flexibility of polyurethane (PU) chemistry allows the incorporation of specific chemical moieties into the backbone structure conferring a unique biological function to these synthetic polymers. We describe here the synthesis and characterization of a PU containing a Gly-Leu linkage, the cleavage site of several matrix metalloproteinases. A Gly-Leu dipeptide was introduced into the chain extender of the polyurethane through the reaction with 1,4-cyclohexane dimethanol. PUs synthesized with the Gly-Leu-based chain extender had a high weight-average molecular weight (M _w > 125 × 10~3) and were phase segregated, semi-crystalline polymers with a low soft-segment glass-transition temperature (T _g <-50°C). Uniaxial tensile testing of PU films indicated that the polymer could withstand high ultimate tensile strengths (approx. 13 MPa) and were flexible with breaking strains of approx. 900%. The Gly-Leu PU had a significantly higher initial modulus, yield stress and ultimate stress compared to a PU previously developed in our laboratory containing a phenylalanine-based chain extender (Phe PU). The Gly-Leu-based chain extender allowed for better hard segment packing and hydrogen bonding leading to enhanced mechanical properties. Electrospinning was used to form scaffolds with randomly organized fibers and an average fiber diameter of approx. 3.6 μm for both the Gly-Leu and Phe PUs. Mouse embryonic fibroblasts were successfully cultured on the PU scaffolds out to 28 days. Further investigations into cell-mediated polymer degradation will help to identify the suitability of this new biomaterial as scaffolds for soft tissue applications.
机译:聚氨酯(PU)化学的固有柔韧性允许将特定的化学部分结合到骨架结构中,从而赋予这些合成聚合物独特的生物学功能。我们在这里描述了含有Gly-Leu键,几种基质金属蛋白酶的切割位点的PU的合成和表征。通过与1,4-环己烷二甲醇的反应,将Gly-Leu二肽引入聚氨酯的扩链剂中。用基于Gly-Leu的扩链剂合成的PU具有高的重均分子量(M _w> 125×10〜3),并且是相分离的半结晶聚合物,具有低的软段玻璃化转变温度(T _g <-50°C)。 PU薄膜的单轴拉伸试验表明,该聚合物可以承受较高的极限拉伸强度(约13 MPa),并且具有约25 MPa的断裂应变。 900%。与先前在我们实验室中开发的含有苯丙氨酸基扩链剂(Phe PU)的PU相比,Gly-Leu PU具有明显更高的初始模量,屈服应力和极限应力。基于Gly-Leu的扩链剂可实现更好的硬链段堆积和氢键结合,从而增强机械性能。使用静电纺丝形成具有随机组织的纤维且平均纤维直径为约5mm的支架。对于Gly-Leu和Phe PU均为3.6μm。将小鼠胚胎成纤维细胞成功地在PU支架上培养28天。对细胞介导的聚合物降解的进一步研究将有助于确定这种新型生物材料作为软组织应用支架的适用性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号