...
首页> 外文期刊>Drug Metabolism and Disposition: The Biological Fate of Chemicals >Physiologically based pharmacokinetic model of mechanism-based inhibition of CYP3A by clarithromycin.
【24h】

Physiologically based pharmacokinetic model of mechanism-based inhibition of CYP3A by clarithromycin.

机译:基于生理学的药代动力学模型,说明克拉霉素对机理的CYP3A抑制作用。

获取原文
获取原文并翻译 | 示例

摘要

The prediction of clinical drug-drug interactions (DDIs) due to mechanism-based inhibitors of CYP3A is complicated when the inhibitor itself is metabolized by CYP3Aas in the case of clarithromycin. Previous attempts to predict the effects of clarithromycin on CYP3A substrates, e.g., midazolam, failed to account for nonlinear metabolism of clarithromycin. A semiphysiologically based pharmacokinetic model was developed for clarithromycin and midazolam metabolism, incorporating hepatic and intestinal metabolism by CYP3A and non-CYP3A mechanisms. CYP3A inactivation by clarithromycin occurred at both sites. K(I) and k(inact) values for clarithromycin obtained from in vitro sources were unable to accurately predict the clinical effect of clarithromycin on CYP3A activity. An iterative approach determined the optimum values to predict in vivo effects of clarithromycin on midazolam to be 5.3 microM for K(i) and 0.4 and 4 h(-1) for k(inact) in the liver and intestines, respectively. The incorporation of CYP3A-dependent metabolism of clarithromycin enabled prediction of its nonlinear pharmacokinetics. The predicted 2.6-fold change in intravenous midazolam area under the plasma concentration-time curve (AUC) after 500 mg of clarithromycin orally twice daily was consistent with clinical observations. Although the mean predicted 5.3-fold change in the AUC of oral midazolam was lower than mean observed values, it was within the range of observations. Intestinal CYP3A activity was less sensitive to changes in K(I), k(inact), and CYP3A half-life than hepatic CYP3A. This semiphysiologically based pharmacokinetic model incorporating CYP3A inactivation in the intestine and liver accurately predicts the nonlinear pharmacokinetics of clarithromycin and the DDI observed between clarithromycin and midazolam. Furthermore, this model framework can be applied to other mechanism-based inhibitors.
机译:当在克拉霉素的情况下,该抑制剂本身被CYP3Aas代谢时,由于基于机理的CYP3A抑制剂对临床药物相互作用的预测非常复杂。先前尝试预测克拉霉素对CYP3A底物(如咪达唑仑)的影响的尝试未能解释克拉霉素的非线性代谢。针对克拉霉素和咪达唑仑的代谢开发了一种基于半生理学的药代动力学模型,该模型通过CYP3A和非CYP3A机制整合了肝和肠代谢。 CYP3A被克拉霉素灭活发生在两个位点。从体外来源获得的克拉霉素的K(I)和k(inact)值无法准确预测克拉霉素对CYP3A活性的临床作用。一种迭代方法确定了预测克拉霉素对咪达唑仑的体内作用的最佳值,肝脏和肠道中的K(i)分别为5.3 microM和k(inact)分别为0.4和4 h(-1)。克拉霉素的CYP3A依赖性代谢的纳入使得能够预测其非线性药代动力学。每天两次口服500 mg克拉霉素后,在血浆浓度-时间曲线(AUC)下预测的静脉咪达唑仑面积变化为2.6倍,与临床观察结果一致。尽管口服咪达唑仑的AUC预测平均改变为5.3倍低于平均观察值,但仍在观察范围内。与肝脏CYP3A相比,肠道CYP3A活性对K(I),k(inact)和CYP3A半衰期的变化较不敏感。这种基于半生理学的药代动力学模型在肠道和肝脏中结合了CYP3A失活,可准确预测克拉霉素和在克拉霉素和咪达唑仑之间观察到的DDI的非线性药物代谢动力学。此外,该模型框架可以应用于其他基于机理的抑制剂。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号