首页> 外文期刊>Drug Metabolism and Disposition: The Biological Fate of Chemicals >In vivo evaluation of drug-drug interaction via mechanism-based inhibition by macrolide antibiotics in cynomolgus monkeys.
【24h】

In vivo evaluation of drug-drug interaction via mechanism-based inhibition by macrolide antibiotics in cynomolgus monkeys.

机译:在食蟹猴中通过大环内酯类抗生素基于机制的抑制作用进行体内药物相互作用的评估。

获取原文
获取原文并翻译 | 示例
           

摘要

Irreversible inhibition, characterized as mechanism-based inhibition (MBI), of cytochrome P450 in drugs has to be avoided for their safe use. A comprehensive assessment of drug-drug interaction (DDI) potential is important during the drug discovery process. In the present study, we evaluated the effects of macrolide antibiotics, erythromycin (ERM), clarithromycin (CAM), and azithromycin (AZM), which are mechanism-based inhibitors of CYP3A, on biotransformation of midazolam (MDZ) in monkeys. These macrolides inhibited the formation of 1'-hydroxymidazolam in monkey microsomes as functions of incubation time and macrolide concentration. Furthermore, the inactivation potentials of macrolides (k(inact)/K(I): CAM congruent with ERM > AZM) were as effective as that observed in human samples. In in vivo studies, MDZ was administered orally (1 mg/kg) without or with multiple oral dosing of macrolides (15 mg/kg, twice a day on days 1-3). On day 3, the area under the plasma concentration-time curve (AUC) of MDZ increased 7.0-, 9.9-, and 2.0-fold with ERM, CAM, and AZM, respectively, compared with MDZ alone. Furthermore, the effects of ERM and CAM on the pharmacokinetics of MDZ were also observed on the day (day 4) after completion of macrolide treatments (AUC changes: 7.3- and 7.3-fold, respectively). Because the plasma concentrations of macrolides immediately before MDZ administration on day 4 were much lower than the IC(50) values for reversible CYP3A inhibition, the persistent effects may be predominantly caused by CYP3A inactivation. These results suggest that the monkey might be a suitable animal model to predict DDIs caused by MBI of CYP3A.
机译:为了安全使用,必须避免药物中细胞色素P450的不可逆抑制,即基于机理的抑制(MBI)。在药物发现过程中,对药物-药物相互作用(DDI)潜力的全面评估很重要。在本研究中,我们评估了大环内酯类抗生素,红霉素(ERM),克拉霉素(CAM)和阿奇霉素(AZM)(它们是CYP3A的机制抑制剂)对咪达唑仑(MDZ)在猴子体内的生物转化的影响。这些大环内酯类化合物抑制了猴微粒体中1'-羟基咪达唑仑的形成,这与孵育时间和大环内酯类化合物的浓度有关。此外,大环内酯类的失活潜力(k(inact)/ K(I):与ERM> AZM一致的CAM)与在人类样品中观察到的一样有效。在体内研究中,口服或不口服大环内酯类药物(15 mg / kg,第1-3天每天两次)口服MDZ(1 mg / kg)。在第3天,与单独的MDZ相比,使用ERM,CAM和AZM时,MDZ的血浆浓度-时间曲线(AUC)下面积分别增加了7.0、9.9和2.0倍。此外,在完成大环内酯类药物治疗的当天(第4天),还观察到了ERM和CAM对MDZ药代动力学的影响(AUC变化分别为7.3倍和7.3倍)。因为在第4天MDZ给药前不久,大环内酯类药物的血浆浓度远低于可逆CYP3A抑制的IC(50)值,因此持久性作用可能主要是由CYP3A失活引起的。这些结果表明,猴子可能是预测由CYP3A的MBI引起的DDI的合适动物模型。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号