...
首页> 外文期刊>Journal of Applied Mechanics: Transactions of the ASME >An Efficient and Accurate Numerical Method of Stress Intensity Factors Calculation of a Branched Crack
【24h】

An Efficient and Accurate Numerical Method of Stress Intensity Factors Calculation of a Branched Crack

机译:分支裂纹应力强度因子的高效精确数值计算方法

获取原文
获取原文并翻译 | 示例
           

摘要

Based on the analytical solution of Crouch to the problem of a constant discontinuity in displacement over a finite line segment in an infinite elastic solid, in the present paper, the crack-tip displacement discontinuity elements, which can be classified as the left and the right crack-tip elements, are presented to model the singularity of stress near a crack tip. Furthermore, the crack-tip elements together with the constant displacement discontinuity elements presented by Crouch and Starfied are used to develop a numerical approach for calculating the stress intensity factors (SIFs) of general plane cracks. In the boundary element implementation, the left or the right crack-tip element is placed locally at the corresponding left or right crack tip on top of the constant displacement discontinuity elements that cover the entire crack surface and the other boundaries. The method is called the hybrid displacement discontinuity method (HDDM). Numerical examples are given and compared with the available solutions. It can be found that the numerical approach is simple, yet very accurate for calculating the SIFs of branched cracks. As a new example, cracks emanating from a rhombus hole in an infinite plate under biaxial loads are taken into consideration. The numerical results indicate the efficiency of the present numerical approach and can reveal the effect of the biaxial load on the SIFs. In addition, the hybrid displacement discontinuity method together with the maximum circumferential stress criterion (Erdogan and Sih) becomes a very effective numerical approach for simulating the fatigue crack propagation process in plane elastic bodies under mixed-mode conditions. In the numerical simulation, for each increment of crack extension, remeshing of existing boundaries is not required because of an intrinsic feature of the HDDM. Crack propagation is simulated by adding new boundary elements on the incremental crack extension to the previous crack boundaries. At the same time, the element characters of some related elements are adjusted according to the manner in which the boundary element method is implemented.
机译:基于克劳奇对无限弹性固体中有限的线段上位移恒定不连续性的解析解,本文提出了裂纹尖端位移不连续性元素,可以分为左右两类。提出了裂纹尖端元素,以模拟裂纹尖端附近的应力奇异性。此外,Crouch和Starfied提出的裂纹尖端元素与恒定位移不连续元素一起用于开发一种数值方法来计算一般平面裂纹的应力强度因子(SIF)。在边界元素实现中,左或右裂纹尖端元素局部放置在覆盖整个裂纹表面和其他边界的恒定位移不连续元素顶部的相应左或右裂纹尖端。该方法称为混合位移不连续法(HDDM)。给出了数值示例,并与可用的解决方案进行了比较。可以发现,数值方法很简单,但对于计算分支裂纹的SIF却非常准确。作为一个新的例子,考虑了在双轴载荷下无限板中菱形孔产生的裂纹。数值结果表明了当前数值方法的有效性,并且可以揭示双轴载荷对SIF的影响。此外,混合位移不连续性方法与最大圆周应力准则(Erdogan和Sih)一起成为模拟混合模式条件下平面弹性体内疲劳裂纹扩展过程的非常有效的数值方法。在数值模拟中,由于HDDM的固有特性,对于裂纹扩展的每个增量,都不需要重新划分现有边界。通过在增量裂纹扩展上将新的边界元素添加到先前的裂纹边界来模拟裂纹扩展。同时,根据实现边界元法的方式来调整一些相关元素的元素特征。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号