...
首页> 外文期刊>Journal of biological inorganic chemistry: JBIC: a publication of the Society of Biological Inorganic Chemistry >Structure and spin density of ferric low-spin heme complexes determined with high-resolution ESEEM experiments at 35 GHz
【24h】

Structure and spin density of ferric low-spin heme complexes determined with high-resolution ESEEM experiments at 35 GHz

机译:低分辨血红素铁复合物的结构和自旋密度通过35 GHz的高分辨率ESEEM实验确定

获取原文
获取原文并翻译 | 示例

摘要

The wide use of the heme group by nature is a consequence of its unusual "electronic flexibility." Major changes in the electronic structure of this molecule can result from small perturbations in its environment. To understand the way the electronic distribution is dictated by the structure of the heme site, it is extremely important to have methods to reliably determine both of them. In this work we propose a way to obtain this information in ferric low-spin heme centers via the determination of g, A, and Q tensors of the coordinated nitrogens using electron spin echo envelope modulation experiments at Q-band microwave frequencies. The results for two bisimidazole heme model complexes, namely, PPIX(Im) _2 and CPIII(Im) _2, where PPIX is protoporphyrin IX, CPIII is coproporphyrin III, and Im is imidazole, selectively labeled with ~(15)N on the heme or imidazole nitrogens are presented. The planes of the axial ligands were found to be parallel and oriented approximately along one of the N-Fe-N directions of the slightly ruffled porphyrin ring (approximately 10°). The spin density was determined to reside in an iron d orbital perpendicular to the heme plane and oriented along the other porphyrin N-Fe-N direction, perpendicular to the axial imidazoles. The benefit of the method presented here lies in the use of Q-band microwave frequencies, which improves the orientation selection, results in no/fewer combination lines in the spectra, and allows separation of the contributions of hyperfine and quadrupole interactions due to the fulfillment of the exact cancellation condition at gZ and the possibility of performing hyperfine decoupling experiments at the gX observer position. These experimental advantages make the interpretation of the spectra straightforward, which results in precise and reliable determination of the structure and spin distribution.
机译:本质上,血红素基团的广泛使用是其异常的“电子灵活性”的结果。该分子电子结构的重大变化可能是由于其环境中的微小扰动引起的。要了解血红素部位结构决定电子分布的方式,拥有可靠地确定两者的方法极为重要。在这项工作中,我们提出了一种通过在Q波段微波频率上使用电子自旋回波包络调制实验确定配位氮的g,A和Q张量来在低铁血红素铁心中获得此信息的方法。两种双咪唑血红素模型配合物的结果,即PPIX(Im)_2和CPIII(Im)_2,其中PPIX是原卟啉IX,CPIII是辅卟啉III,Im是咪唑,在血红素上选择性标记有〜(15)N或咪唑氮。发现轴向配体的平面是平行的,并且大约沿着略微褶皱的卟啉环的N-Fe-N方向之一(大约10°)取向。确定自旋密度位于垂直于血红素平面并沿着另一卟啉N-Fe-N方向(垂直于轴向咪唑)的铁d轨道上。此处介绍的方法的优势在于使用Q波段微波频率,可改善方向选择,使光谱中的组合线更小/更少,并且由于实现了超细和四极子相互作用的贡献而得以分离在gZ处的精确消除条件,以及在gX观察者位置执行超精细去耦实验的可能性。这些实验优势使光谱的解释变得简单明了,从而可以精确可靠地确定结构和自旋分布。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号