首页> 外文期刊>Journal of Applied Geophysics >Improving ground-penetrating radar data in sedimentary rocks using deterministic deconvolution
【24h】

Improving ground-penetrating radar data in sedimentary rocks using deterministic deconvolution

机译:使用确定性反卷积改善沉积岩中的探地雷达数据

获取原文
获取原文并翻译 | 示例
           

摘要

Resolution is key to confidently identifying unique geologic features using ground-penetrating radar (GPR) data. Source wavelet "ringing" (related to bandwidth) in a GPR section limits resolution because of wavelet interference, and can smear reflections in time and/or space. The resultant potential for misinterpretation limits the usefulness of GPR. Deconvolution offers the ability to compress the source wavelet and improve temporal resolution. Unlike statistical deconvolution, deterministic deconvolution is mathematically simple and stable while providing the highest possible resolution because it uses the source wavelet unique to the specific radar equipment. Source wavelets generated in, transmitted through and acquired from air allow successful application of deterministic approaches to wavelet suppression. We demonstrate the validity of using a source wavelet acquired in air as the operator for deterministic deconvolution in a field application using "400-MHz" antennas at a quarry site characterized by interbedded carbonates with shale partings. We collected GPR data on a bench adjacent to cleanly exposed quarry faces in which we placed conductive rods to provide conclusive groundtruth for this approach to deconvolution. The best deconvolution results, which are confirmed by the conductive rods for the 400-MHz antenna tests, were observed for wavelets acquired when the transmitter and receiver were separated by 0.3 in. Applying deterministic deconvolution to GPR data collected in sedimentary strata at our study site resulted in an improvement in resolution (50%) and improved spatial location (0.10-0.15 in) of geologic features compared to the same data processed without deterministic deconvolution. The effectiveness of deterministic deconvolution for increased resolution and spatial accuracy of specific geologic features is further demonstrated by comparing results of deconvolved data with nondeconvolved data acquired along a 30-m transect immediately adjacent to a fresh quarry face. The results at this site support using deterministic deconvolution, which incorporates the GPR instrument's unique source wavelet, as a standard part of routine GPR data processing. (C) 2003 Elsevier B.V All rights reserved. [References: 17]
机译:分辨率是使用探地雷达(GPR)数据自信地识别独特地质特征的关键。 GPR部分中的源小波“振铃”(与带宽有关)由于小波干扰而限制了分辨率,并且可能会在时间和/或空间中涂抹反射。由此产生的潜在误解限制了GPR的实用性。去卷积提供了压缩源小波并提高时间分辨率的能力。与统计解卷积不同,确定性解卷积在数学上简单且稳定,同时提供了尽可能高的分辨率,因为确定性卷积使用特定雷达设备特有的源子波。在空气中产生,传输和获取的源子波可以成功地将确定性方法应用于子波抑制。我们展示了使用空气中获取的源子波作为运算符进行确定性反卷积的有效性,该操作在采石场特征为页岩分质的碳酸盐互层的采石场中使用“ 400 MHz”天线进行确定性反卷积。我们在干净暴露的采石场附近的工作台上收集了GPR数据,在该工作台中放置了导电棒,为该解卷积方法提供了最终的结论。当发射器和接收器相隔0.3英寸时,所获得的子波可以观察到最佳的去卷积结果,这是通过导电棒进行的400 MHz天线测试所证实的。在我们的研究地点,将确定性去卷积应用于沉积地层中收集的GPR数据与不进行确定性反卷积处理的相同数据相比,地质特征的分辨率提高了(50%),空间位置改善了(0.10-0.15 in)。确定性反褶积对于提高特定地质特征的分辨率和空间精度的有效性通过将反褶积数据的结果与沿紧邻新鲜采石场的30米断面获得的非反褶积数据进行比较而得到进一步证明。该站点的结果使用确定性反卷积来支持,该方法将GPR仪器独特的源小波合并为常规GPR数据处理的标准部分。 (C)2003 Elsevier B.V保留所有权利。 [参考:17]

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号