首页> 外文会议>Detection and Sensing of Mines, Explosive Objects, and Obscured Targets XXII >An improved frequency domain feature with partial least-squares dimensionality reduction for classifying buried threats in forward-looking ground-penetrating radar data
【24h】

An improved frequency domain feature with partial least-squares dimensionality reduction for classifying buried threats in forward-looking ground-penetrating radar data

机译:一种改进的频域特征,具有减少的最小二乘维数,可用于对前瞻性探地雷达数据中的掩埋威胁进行分类

获取原文
获取原文并翻译 | 示例

摘要

Forward-looking ground penetrating radar (FLGPR) is a remote sensing modality that has been investigated for buried threat detection. The FLGPR considered in this work consists of a sensor array mounted on the front of a vehicle, which inspects an area in front of the vehicle as it moves down a lane. The FLGPR collects data using a stepped frequency approach, and the received radar data is processed by filtered backprojection to create images of the subsurface. A large body of research has focused on developing effective supervised machine learning algorithms to automatically discriminate between imagery associated with target and non-target FLGPR responses. An important component of these automated algorithms is the design of effective features (e.g., image descriptors) that are extracted from the FLGPR imagery and then provided to the machine learning classifiers (e.g., support vector machines). One feature that has recently been proposed is computed from the magnitude of the two-dimensional fast Fourier transform (2DFFT) of the FLGPR imagery. This paper presents a modified version of the 2DFFT feature, termed 2DFFT+, that yields substantial detection performance when compared with several other existing features on a large collection of FLGPR imagery. Further, we show that using partial least-squares discriminative dimensionality reduction, it is possible to dramatically lower the dimensionality of the 2DFFT+ feature from 2652 dimensions down to twenty dimensions (on average), while simultaneously improving its performance.
机译:前瞻性探地雷达(FLGPR)是一种遥感模式,已被研究用于掩埋威胁检测。在这项工作中考虑的FLGPR由安装在车辆前部的传感器阵列组成,该传感器阵列在车辆沿车道下移时检查其前方区域。 FLGPR使用步进频率方法收集数据,然后通过滤波后的反投影处理接收到的雷达数据,以创建地下图像。大量研究集中在开发有效的监督式机器学习算法上,以自动区分与目标FLGPR响应和非目标FLGPR响应相关的图像。这些自动化算法的重要组成部分是有效特征(例如图像描述符)的设计,这些特征将从FLGPR图像中提取出来,然后提供给机器学习分类器(例如支持向量机)。根据FLGPR图像的二维快速傅立叶变换(2DFFT)的大小,可以计算出最近提出的一项功能。本文介绍了称为2DFFT +的2DFFT功能的修改版本,与大量FLGPR图像上的其他几个现有功能相比,该功能可产生可观的检测性能。此外,我们显示出使用偏最小二乘判别维数缩减,可以将2DFFT +特征的维数从2652维降低到20维(平均),同时提高其性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号