首页> 外文期刊>Journal of applied physiology >Emergence of airway smooth muscle mechanical behavior through dynamic reorganization of contractile units and force transmission pathways
【24h】

Emergence of airway smooth muscle mechanical behavior through dynamic reorganization of contractile units and force transmission pathways

机译:通过收缩单位和力传递途径的动态重组出现气道平滑肌机械行为

获取原文
获取原文并翻译 | 示例
       

摘要

Airway hyperresponsiveness (AHR) in asthma remains poorly understood despite significant research effort to elucidate relevant underlying mechanisms. In particular, a significant body of experimental work has focused on the effect of tidal fluctuations on airway smooth muscle (ASM) cells, tissues, lung slices, and whole airways to understand the bronchodilating effect of tidal breathing and deep inspirations. These studies have motivated conceptual models that involve dynamic reorganization of both cytoskeletal components as well as contractile machinery. In this article, a biophysical model of the whole ASM cell is presented that combines 1) crossbridge cycling between actin and myosin; 2) actin-myosin disconnectivity, under imposed length changes, to allow dynamic reconfiguration of "force transmission pathways"; and 3) dynamic parallel-to-serial transitions of contractile units within these pathways that occur through a length fluctuation. Results of this theoretical model suggest that behavior characteristic of experimentally observed force-length loops of maximally activated ASM strips can be explained by interactions among the three mechanisms. Crucially, both sustained disconnectivity and parallel-to-serial transitions are necessary to explain the nature of hysteresis and strain stiffening observed experimentally. The results provide strong evidence that dynamic rearrangement of contractile machinery is a likely mechanism underlying many of the phenomena observed at timescales associated with tidal breathing. This theoretical cell-level model captures many of the salient features of mechanical behavior observed experimentally and should provide a useful starting block for a bottom-up approach to understanding tissue-level mechanical behavior.
机译:尽管进行了大量的研究以阐明相关的潜在机制,但对于哮喘的气道高反应性(AHR)仍然知之甚少。特别是,大量的实验工作集中于潮汐波动对气道平滑肌(ASM)细胞,组织,肺片和整个气道的影响,以了解潮气呼吸和深层吸气的支气管扩张作用。这些研究激发了涉及细胞骨架成分以及收缩机制的动态重组的概念模型。本文介绍了整个ASM细胞的生物物理模型,该模型结合了1)肌动蛋白和肌球蛋白之间的跨桥循环; 2)在施加的长度变化下,肌动蛋白-肌球蛋白不连接,以允许动态重新配置“力传递路径”; 3)在这些路径中,通过长度波动发生的收缩单位动态平行-串行转换。该理论模型的结果表明,最大程度激活的ASM条带的实验观察到的力长环的行为特征可以通过这三种机制之间的相互作用来解释。至关重要的是,持续的不连续性和平行至串行的转变对于解释实验观察到的磁滞和应变刚度的本质是必要的。结果提供了有力的证据,表明收缩机械的动态重排是可能在与潮气呼吸有关的时间尺度上观察到的许多现象的潜在机制。该理论细胞水平模型捕获了实验观察到的许多机械行为的显着特征,并应为自下而上的理解组织水平机械行为的方法提供有用的起点。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号