...
首页> 外文期刊>Journal of applied physiology >Time-frequency methods and voluntary ramped-frequency breathing: A powerful combination for exploration of human neurophysiological mechanisms
【24h】

Time-frequency methods and voluntary ramped-frequency breathing: A powerful combination for exploration of human neurophysiological mechanisms

机译:时频方法和主动斜频呼吸:探索人类神经生理机制的有力组合

获取原文
获取原文并翻译 | 示例

摘要

Time-frequency methods and voluntary ramped-frequency breathing: A powerful combination for exploration of human neurophysiological mechanisms. J Appl Physiol 115: 18061821, 2013. First published October 10, 2013; doi:10.1152/japplphysiol.00802.2013.We experimentally altered the timing of respiratory motoneuron activity as a means to modulate and better understand otherwise hidden human central neural and hemodynamic oscillatory mechanisms. We recorded the electrocardiogram, finger photoplethysmographic arterial pressure, tidal carbon dioxide concentrations, and muscle sympathetic nerve activity in 13 healthy supine young men who gradually increased or decreased their breathing frequencies between 0.05 and 0.25 Hz over 9-min periods. We analyzed results with traditional time- and frequency-domain methods, and also with time-frequency methods (wavelet transform, wavelet phase coherence, and directional coupling). We determined statistical significance and identified frequency boundaries by comparing measurements with randomly generated surrogates. Our results support several major conclusions. First, respiration causally modulates both sympathetic (weakly) and vagal motoneuron (strongly) oscillations over a wide frequency rangeone that extends well below the frequency of actual breaths. Second, breathing frequency broadly modulates vagal baroreflex gain, with peak gains registered in the low frequency range. Third, breathing frequency does not influence median levels of sympathetic or vagal activity over time. Fourth, phase relations between arterial pressure and sympathetic and vagal motoneurons are unaffected by breathing, and are therefore likely secondary to intrinsic responsiveness of these motoneurons to other synaptic inputs. Finally, breathing frequency does not affect phase coherence between diastolic pressure and muscle sympathetic oscillations, but it augments phase coherence between systolic pressure and R-R interval oscillations over a limited portion of the usual breathing frequency range. These results refine understanding of autonomic oscillatory processes and those physiological mechanisms known as the human respiratory gate.
机译:时频方法和主动斜频呼吸:探索人类神经生理机制的有力组合。 J Appl Physiol 115:18061821,2013。2013年10月10日首次发布; doi:10.1152 / japplphysiol.00802.2013。我们实验性地更改了呼吸运动神经元活动的时间,以此来调节和更好地理解否则隐藏的人类中枢神经和血液动力学振荡机制。我们记录了13名健康的仰卧位年轻男子的心电图,手指光体积描记动脉压,潮气中的二氧化碳浓度和肌肉交感神经活动,这些人在9分钟内逐渐在0.05到0.25 Hz之间增加或减少了呼吸频率。我们使用传统的时域和频域方法以及时频方法(小波变换,小波相位相干和方向耦合)分析结果。通过比较测量值与随机产生的替代指标,我们确定了统计显着性并确定了频率边界。我们的结果支持几个主要结论。首先,呼吸会在很远的频率范围内调节交感神经(微弱)和迷走神经运动(强烈)振动,该频率范围远低于实际呼吸的频率。其次,呼吸频率广泛地调节迷走神经压力反射增益,峰值增益记录在低频范围内。第三,呼吸频率不会随时间影响交感或迷走神经活动的中位水平。第四,动脉压与交感神经和迷走神经运动神经元之间的相位关系不受呼吸影响,因此很可能是继发于这些运动神经元对其他突触输入的内在响应的。最后,呼吸频率不会影响舒张压和肌肉交感性振荡之间的相位相干性,但会在正常呼吸频率范围的有限范围内增加收缩压和R-R间隔振荡之间的相干性。这些结果完善了对自主振荡过程和那些被称为人类呼吸门的生理机制的理解。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号