...
首页> 外文期刊>Journal of applied physiology >A sensitive in vivo model for quantifying interstitial convective transport of injected macromolecules and nanoparticles.
【24h】

A sensitive in vivo model for quantifying interstitial convective transport of injected macromolecules and nanoparticles.

机译:一种敏感的体内模型,用于量化注射的大分子和纳米颗粒的间隙对流传输。

获取原文
获取原文并翻译 | 示例
           

摘要

Effective interstitial transport of particles is necessary for injected drug/diagnostic agents to reach the intended target; however, quantitative methods to estimate such transport parameters are lacking. In this study, we develop an in vivo model for evaluating interstitial convection of injected macromolecules and nanoparticles. Fluorescently labeled macromolecules and particles are coinfused with a reference solute at constant infusion pressure intradermally into the mouse tail tip, and their relative convection coefficients are determined from spatial and temporal interstitial concentration profiles. Quantifying relative solute velocity with a coinfused reference solute eliminates the need to estimate interstitial fluid velocity profiles, greatly reducing experimental variability. To demonstrate sensitivity and usefulness of this model, we compare the effects of size (dextrans of 3, 40, 71, and 2,000 kDa and 40-nm diameter particles), shape (linear dextran 71 kDa vs. 69 kDa globular protein albumin), and charge (anionic vs. neutral dextran 3 kDa) on interstitial convection. We find significant differences in interstitial transport rates between each of these molecules and confirm expected transport phenomena, testifying to sensitivity of the model in comparing solutes of different size, shape, and charge. Our data show that size exclusion (within a specific size range) dominates molecular convection, while mechanical hindrance slows larger molecules and nanoparticles; proteins convect slower than linear molecules of equal molecular mass, and negative surface charges increase convection through matrix repulsion. Our in vivo model is presumably a sensitive and reliable tool for evaluating and optimizing potential drug/diagnostic vehicles that utilize interstitial and lymphatic delivery routes.
机译:有效的颗粒间质运输对于注射的药物/诊断剂达到预期目标是必不可少的;然而,缺乏估计这种运输参数的定量方法。在这项研究中,我们开发了一种体内模型,用于评估注射的大分子和纳米颗粒的间隙对流。将荧光标记的大分子和颗粒与参比溶质在恒定输注压力下通过皮内内注入小鼠尾尖共融,并根据空间和时间间质浓度曲线确定其相对对流系数。用共熔的参考溶质对相对溶质速度进行定量,从而无需估算间隙液速度分布,从而大大降低了实验的可变性。为了证明该模型的敏感性和实用性,我们比较了尺寸(3、40、71和2,000 kDa和直径为40 nm的颗粒的葡聚糖),形状(线性葡聚糖71 kDa与69 kDa球状蛋白白蛋白)的影响,间隙对流中的电荷(阴离子对中性葡聚糖3 kDa)。我们发现这些分子之间的间隙传输速率存在显着差异,并确认了预期的传输现象,从而证明了该模型在比较大小,形状和电荷不同的溶质时的敏感性。我们的数据表明,尺寸排阻(在特定的尺寸范围内)主导着分子对流,而机械阻碍则减慢了较大的分子和纳米颗粒。蛋白质的对流速度比等分子量的线性分子慢,并且负表面电荷通过基质排斥增强对流。我们的体内模型大概是评估和优化利用间质和淋巴输送途径的潜在药物/诊断载体的灵敏且可靠的工具。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号