...
首页> 外文期刊>Cellular and Molecular Bioengineering >A Time-Dependent Electrodiffusion-Convection Model for Charged Macromolecule Transport Across the Microvessel Wall and in the Interstitial Space
【24h】

A Time-Dependent Electrodiffusion-Convection Model for Charged Macromolecule Transport Across the Microvessel Wall and in the Interstitial Space

机译:跨大血管壁和间隙空间中带电大分子迁移的时变电扩散-对流模型。

获取原文
获取原文并翻译 | 示例
           

摘要

The extravascular matrix carries negative charge due to its glycosaminoglycans (GAGs) composition. Previous experiments have demonstrated that the negative charge affects transvascular passage and interstitial accumulation of charged molecules in both normal and pathological tissues. In the present study, we thereby developed an electrodiffusion-convection model to investigate the mechanisms by which the negatively charged tissue matrix regulates the interstitial transport of charged macromolecules. Our model predictions demonstrated that the tissue diffusion coefficient of negatively charged albumin (net charge = ?19) in rat mesentery is comparable to that of neutral dextran with equivalent hydrodynamic radius. The discrepancy in their interstitial concentration profiles observed by Fox and Wayland (Microvasc. Res. 18:255–276, 1979) can be explained by the charge effect, specifically, by the electrical partition at the interface between the non-charged space at the vessel wall exit and the charged tissue space, instead of by different tissue diffusion coefficients that Fox and Wayland postulated. This charge effect induces equivalent to approximately two-fold difference in tissue diffusion coefficients of charged albumin and neutral dextran with the same free diffusion coefficients. Furthermore, our results indicate that increased filtration by increased microvessel permeability greatly enhances the accumulation of positively charged macromolecules in the interstitial space but not that of negatively charged ones.
机译:血管外基质由于其糖胺聚糖(GAG)组成而带有负电荷。先前的实验表明,负电荷会影响正常组织和病理组织中的跨血管通道和带电分子的间隙积累。在本研究中,我们由此开发了电扩散-对流模型,以研究带负电的组织基质调节带电大分子的间隙运输的机制。我们的模型预测表明,在大鼠肠系膜中带负电荷的白蛋白(净电荷=?19)的组织扩散系数与具有相等流体动力学半径的中性葡聚糖相当。 Fox和Wayland(Microvasc。Res。18:255-276,1979)观察到的间质浓度分布的差异可以通过电荷效应来解释,具体而言,可以通过在不带电空间之间的界面处的电分隔来解释。血管壁出口和带电的组织空间,而不是由Fox和Wayland提出的不同的组织扩散系数。这种电荷效应导致带电荷的白蛋白和中性右旋糖酐具有相同的自由扩散系数的组织扩散系数近似相等于两倍。此外,我们的结果表明,通过增加微血管通透性来增加过滤可以大大增加带正电的大分子在间隙中的积累,而不是带负电的大分子的积累。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号