首页> 外文期刊>Journal of Anatomy >Effect of different hydroxyapatite incorporation methods on the structural and biological properties of porous collagen scaffolds for bone repair
【24h】

Effect of different hydroxyapatite incorporation methods on the structural and biological properties of porous collagen scaffolds for bone repair

机译:不同羟基磷灰石掺入方法对多孔胶原支架修复骨骼结构和生物学特性的影响

获取原文
获取原文并翻译 | 示例
获取外文期刊封面目录资料

摘要

Scaffolds which aim to provide an optimised environment to regenerate bone tissue require a balance between mechanical properties and architecture known to be conducive to enable tissue regeneration, such as a high porosity and a suitable pore size. Using freeze-dried collagen-based scaffolds as an analogue of native ECM, we sought to improve the mechanical properties by incorporating hydroxyapatite (HA) in different ways while maintaining a pore architecture sufficient to allow cell infiltration, vascularisation and effective bone regeneration. Specifically we sought to elucidate the effect of different hydroxyapatite incorporation methods on the mechanical, morphological, and cellular response of the resultant collagen-HA scaffolds. The results demonstrated that incorporating either micron-sized (CHA scaffolds) or nano-sized HA particles (CnHA scaffolds) prior to freeze-drying resulted in moderate increases in stiffness (2.2-fold and 6.2-fold, respectively, vs. collagen-glycosaminoglycan scaffolds, P < 0.05, a scaffold known to support osteogenesis), while enabling good cell attachment, and moderate mesenchymal stem cell (MSC)-mediated calcium production after 28 days' culture (2.1-fold, P < 0.05, and 1.3-fold, respectively, vs. CG scaffolds). However, coating of collagen scaffolds with a hydroxyapatite precipitate after freeze-drying (CpHA scaffolds) has been shown to be a highly effective method to increase the compressive modulus (26-fold vs. CG controls, P < 0.001) of scaffolds while maintaining a high porosity (similar to 98%). The coating of the ligand-dense collagen structure results in a lower cell attachment level (P < 0.05), although it supported greater cell-mediated calcium production (P < 0.0001) compared with other scaffold variants after 28 days' culture. The comparatively good mechanical properties of these high porosity scaffolds is obtained partially through highly crosslinking the scaffolds with both a physical (DHT) and chemical (EDAC) crosslinking treatment. Control of scaffold microstructure was examined via alterations in freezing temperature. It was found that the addition of HA prior to freeze-drying generally reduced the pore size and so the CpHA scaffold fabrication method offered increased control over the resulting scaffolds microstructure. These findings will help guide future design considerations for composite biomaterials and demonstrate that the method of HA incorporation can have profound effects on the resulting scaffold structural and biological response.
机译:旨在提供优化环境以再生骨组织的支架需要在机械性能和已知有利于使组织再生的结构之间取得平衡,例如高孔隙率和合适的孔径。使用冻干的基于胶原蛋白的支架作为天然ECM的类似物,我们试图通过以不同方式掺入羟基磷灰石(HA)来改善机械性能,同时保持足以允许细胞浸润,血管形成和有效骨再生的孔结构。具体而言,我们试图阐明不同羟基磷灰石掺入方法对所得胶原HA支架的机械,形态和细胞反应的影响。结果表明,在冷冻干燥之前加入微米级(CHA支架)或纳米级HA颗粒(CnHA支架),与胶原蛋白-糖胺聚糖相比,刚度会适度增加(分别为2.2倍和6.2倍)支架,P <0.05,已知支持骨生成的支架),同时能够良好的细胞附着,并在培养28天后产生中等程度的间充质干细胞(MSC)介导的钙生成(2.1倍,P <0.05和1.3倍) ,分别与CG支架相比)。然而,冻干后用羟基磷灰石沉淀物涂覆胶原蛋白支架(CpHA支架)已被证明是一种有效的方法来增加支架的压缩模量(相对于CG对照为26倍,P <0.001),同时保持高孔隙率(约98%)。培养28天后,与其他支架变体相比,配体密集的胶原蛋白结构涂层可降低细胞附着水平(P <0.05),尽管它支持更多的细胞介导的钙生成(P <0.0001)。这些高孔隙率支架的相对较好的机械性能部分是通过采用物理(DHT)和化学(EDAC)交联处理使支架高度交联而部分获得的。通过改变冷冻温度来检查支架微结构的控制。发现在冷冻干燥之前添加HA通常会减小孔径,因此CpHA支架的制备方法提供了对所得支架微结构的增强控制。这些发现将有助于指导复合生物材料的未来设计考虑,并证明掺入HA的方法可对所产生的支架结构和生物学反应产生深远的影响。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号