...
首页> 外文期刊>Journal of Anatomy >Mechanisms for axon maintenance and plasticity in motoneurons: Alterations in motoneuron disease
【24h】

Mechanisms for axon maintenance and plasticity in motoneurons: Alterations in motoneuron disease

机译:运动神经元轴突维持和可塑性的机制:运动神经元疾病的变化。

获取原文
获取原文并翻译 | 示例

摘要

In motoneuron disease and other neurodegenerative disorders, the loss of synapses and axon branches occurs early but is compensated by sprouting of neighboring axon terminals. Defective local axonal signaling for maintenance and dynamics of the axonal microtubule and actin cytoskeleton plays a central role in this context. The molecular mechanisms that lead to defective cytoskeleton architecture in two mouse models of motoneuron disease are summarized and discussed in this manuscript. In the progressive motor neuropathy (pmn) mouse model of motoneuron disease that is caused by a mutation in the tubulin-specific chaperone E gene, death of motoneuron cell bodies appears as a consequence of axonal degeneration. Treatment with bcl-2 overexpression or with glial-derived neurotrophic factor prevents loss of motoneuron cell bodies but does not influence the course of disease. In contrast, treatment with ciliary neurotrophic factor (CNTF) significantly delays disease onset and prolongs survival of pmn mice. This difference is due to the activation of Stat-3 via the CNTF receptor complex in axons of pmn mutant motoneurons. Most of the activated Stat-3 protein is not transported to the nucleus to activate transcription, but interacts locally in axons with stathmin, a protein that destabilizes microtubules. This interaction plays a major role in CNTF signaling for microtubule dynamics in axons. In Smn-deficient mice, a model of spinal muscular atrophy, defects in axonal translocation of β-actin mRNA and possibly other mRNA species have been observed. Moreover, the regulation of local protein synthesis in response to signals from neurotrophic factors and extracellular matrix proteins is altered in motoneurons from this model of motoneuron disease. These findings indicate that local signals are important for maintenance and plasticity of axonal branches and neuromuscular endplates, and that disturbances in these signaling mechanisms could contribute to the pathophysiology of motoneuron diseases.
机译:在运动神经元疾病和其他神经退行性疾病中,突触和轴突分支的丢失较早发生,但可以通过邻近轴突末端的发芽来弥补。在这种情况下,轴突微管和肌动蛋白细胞骨架的维持和动力学的局部轴突缺损信号起着核心作用。本论文总结并讨论了导致两种运动神经元疾病小鼠模型中细胞骨架结构缺陷的分子机制。在由微管蛋白特异性伴侣蛋白E基因突变引起的运动神经元疾病的进行性运动神经病(pmn)小鼠模型中,运动神经元细胞体的死亡似乎是轴突变性的结果。用bcl-2过表达或神经胶质源性神经营养因子治疗可防止运动神经元细胞体丢失,但不影响疾病进程。相比之下,睫状神经营养因子(CNTF)的治疗显着延迟了疾病的发作并延长了pmn小鼠的生存期。这种差异是由于pm-3突变型运动神经元轴突中CNTF受体复合物激活了Stat-3。大多数活化的Stat-3蛋白不会转运至细胞核来激活转录,而是在轴突中与使微管不稳定的蛋白质Stathmin局部相互作用。这种相互作用在轴突中微管动力学的CNTF信号传导中起主要作用。在Smn缺陷型小鼠中,已经观察到脊髓性肌萎缩症模型,β-actinmRNA的轴突移位缺陷以及可能的其他mRNA物种。此外,在来自这种运动神经元疾病模型的运动神经元中,响应于来自神经营养因子和细胞外基质蛋白的信号,局部蛋白合成的调节被改变。这些发现表明,局部信号对于轴突分支和神经肌肉终板的维持和可塑性很重要,并且这些信号传导机制的紊乱可能有助于运动神经元疾病的病理生理。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号