首页> 外文期刊>JOM >Rotating Frame Analog of Spin-Locking and Spin-Lattice Relaxation in the Doubly Rotating Frame
【24h】

Rotating Frame Analog of Spin-Locking and Spin-Lattice Relaxation in the Doubly Rotating Frame

机译:双旋转框架中自旋锁定和自旋晶格弛豫的旋转框架模拟

获取原文
获取原文并翻译 | 示例
       

摘要

The present paper reports the achievement of the rotating-frame analog of spin-locking and its application to the precise measurements of the spin-lattice relaxation time T_(1DR) in the doubly rotating frame. After the magnetization is aligned along the resonant RF field H_(1), a pulse sequence of a low-frequency oscillating magnetic field at exact resonance is applied perpendicular to H_(1). We have overcome several technical difficulties arising from the fact that the rotating-wave approximation is not valid for the low-frequency field. We have theoretically derived an expression of T_(1DR)~(-1) due to fluctuating magnetic dipole interactions in the weak collision case and found an important relation among the spinlattice relaxation rates T_(1)~(-1), T_(1ρ)~(-1), and T_(1DR)~(-1). This relation can be used to ascertain whether the relaxation is only due to the fluctuating magnetic dipole interactions between like spins. The experiment was carried out on ~(1)H nuclei in tetramethylammonium iodide (CH_(3))_(4)NI and the temperature dependence of T_(1DR)~(-1) was measured together with that of T_(1)~(-1) and T_(1ρ)~(-1). The activation energies and the preexponential factors of Arrhenius expressions of the correlation times are newly determined.
机译:本文报道了自旋锁定旋转框架模拟的实现及其在双旋转框架中精确测量自旋晶格弛豫时间T_(1DR)的应用。在沿着谐振RF场H_(1)对齐磁化之后,垂直于H_(1)施加精确谐振的低频振荡磁场的脉冲序列。我们克服了由于旋转波逼近对于低频场无效这一事实而引起的一些技术难题。在弱碰撞情况下,由于磁偶极子相互作用的波动,我们从理论上推导了T_(1DR)〜(-1)的表达式,并发现了自旋晶格弛豫率T_(1)〜(-1),T_(1ρ)之间的重要关系。 )〜(-1)和T_(1DR)〜(-1)。该关系可以用来确定弛豫是否仅是由于类似自旋之间的波动的磁偶极子相互作用引起的。在四甲基碘化铵(CH_(3))_(4)NI中的〜(1)H核上进行了实验,并测量了T_(1DR)〜(-1)和T_(1)的温度依赖性。 〜(-1)和T_(1ρ)〜(-1)。重新确定相关时间的阿雷尼乌斯表达式的激活能和指数前因子。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号