...
首页> 外文期刊>Drug safety: An international journal of medical toxicology and drug experience >Data mining for prospective early detection of safety signals in the vaccine adverse event reporting system (VAERS): A case study of febrile seizures after a 2010-2011 seasonal influenza virus vaccine
【24h】

Data mining for prospective early detection of safety signals in the vaccine adverse event reporting system (VAERS): A case study of febrile seizures after a 2010-2011 seasonal influenza virus vaccine

机译:数据挖掘可用于疫苗不良事件报告系统(VAERS)中的安全信号的早期检测:以2010-2011年季节性流感病毒疫苗后高热惊厥为例

获取原文
获取原文并翻译 | 示例
           

摘要

Background: Reports of data mining results as an initial indication of a prospectively detected safety signal in the US Vaccine Adverse Event Reporting System (VAERS) have been limited. In April 2010 a vaccine safety signal for febrile seizures after Fluvax? and Fluvax? Junior was identified in Australia without the aid of data mining. In order to refine Northern Hemisphere influenza vaccine safety surveillance, VAERS data mining analyses based on vaccine brand name were initiated during the 2010-2011 influenza season. Objective: We describe the strategies that led to the finding of a novel safety signal using empirical Bayesian data mining. Methods: The primary US VAERS analysis calculated an empirical Bayesian geometric mean (EBGM), which was adjusted for age group, sex and year received. A secondary age-stratified analysis calculated a separate EBGM for 11 pre-defined age subsets. These bi-weekly analyses were generated with database restrictions that separated live and inactivated vaccines as well as with the US VAERS database. A cutoff of 2.0 at the fifth percentile of the confidence interval (CI) for the EBGM, the EB05, was used to identify vaccine adverse event combinations for further evaluation. Examination of potential interactions among concomitantly administered vaccines is based on the Interaction Signal Score (INTSS), which is a relative measure of how much excess disproportionality is present in the three-dimensional combination of two vaccines and one adverse event term. An INTSS 1 indicates that the CI for the three-dimensional analysis is larger than and does not overlap with the CI from the highest two-dimensional analysis. We subsequently examined the possibility of masking by removing all 2,095 Fluzone? 2010-2011 reports from the 10 December 2010 version of the VAERS database. In addition, we calculated relative reporting ratios to observe the relative contribution of adjustment and the Multi-Item Gamma Poisson Shrinker (MGPS) algorithm to EBGM values. Results: On 10 December 2010, US VAERS analyses we found an EB05 2 for Fluzone? 2010-2011 and the Medical Dictionary for Regulatory Activities (MedDRA?) term "febrile seizure". MedDRA ? terminology is the medical terminology developed under the auspices of the International Conference on Harmonization of technical requirements for Registration of Pharmaceuticals for Human Use (ICH). No other vaccine products had independent vaccine-febrile seizure combinations with an EB05 2. Three-dimensional analyses to examine possible interactions among vaccine products concomitantly administered with Fluzone? 2010-2011 yielded Interaction Signal Score values 1. Removal of all Fluzone? 2010-2011 reports from the VAERS database failed to demonstrate a previously masked vaccine adverse event pair with an EB05 2. The inactivated vaccine database restriction resulted in a 41 % reduction in background VAERS reports and a 24 % reduction in foreground VAERS reports. Conclusion: Empirical Bayesian data mining in VAERS prospectively detected the safety signal for febrile seizures after Fluzone? 2010-2011 in young children. The EB05 threshold, database restrictions, adjustment and baseline data mining were strategies adopted a priori to enhance the specificity of the 2010-2011 influenza vaccine data mining analyses. A database restriction used to separate live vaccines resulted in a reduced EB05. Adjustment of data mining analyses had a larger effect on estimates of disproportionality than the MGPS algorithm. Masking did not appear to influence our findings. This case study illustrates the value of VAERS data mining for vaccine safety monitoring.
机译:背景:数据挖掘结果的报告作为美国疫苗不良事件报告系统(VAERS)中预期检测到的安全信号的初始指示,已经受到限制。 2010年4月,出现Fluvax后高热惊厥的疫苗安全信号?和Fluvax? Junior在没有数据挖掘帮助的情况下在澳大利亚被确定。为了完善北半球流感疫苗的安全监控,在2010-2011年流感季节期间开始了基于疫苗品牌名称的VAERS数据挖掘分析。目的:我们描述了使用经验贝叶斯数据挖掘导致发现新型安全信号的策略。方法:主要的美国VAERS分析计算出经验贝叶斯几何平均数(EBGM),并根据年龄组,性别和接收年限进行了调整。二次年龄分层分析为11个预定义的年龄子集计算了单独的EBGM。这些每两周进行的分析是通过将活疫苗和灭活疫苗分开的数据库限制以及US VAERS数据库生成的。 EBGM的置信区间(CI)的第五个百分位数(EB05)的截止值为2.0,用于识别疫苗不良事件组合以进行进一步评估。伴随接种的疫苗之间潜在相互作用的检查基于相互作用信号评分(INTSS),它是两种疫苗和一个不良事件项的三维组合中存在多少过量不成比例的相对度量。 INTSS> 1表示三维分析的CI大于最高二维分析的CI,并且不与之重叠。随后,我们检查了通过去除所有2,095 Fluzone掩盖的可能性? VAERS数据库的2010年12月10日版本中的2010-2011年报告。此外,我们计算了相对报告比率,以观察调整和EBGM值的多项Gamma Poisson Shrinker(MGPS)算法的相对贡献。结果:2010年12月10日,美国VAERS分析发现Fluzone的EB05> 2? 2010-2011年以及《管制活动医学词典》(MedDRA?)术语“高热惊厥”。 MedDRA?术语是在统一人类使用药品注册技术要求国际会议(ICH)的主持下开发的医学术语。没有其他疫苗产品具有EB05> 2的独立疫苗热性惊厥组合。三维分析,以检查与Fluzone一起使用的疫苗产品之间可能存在的相互作用? 2010-2011年的互动信号得分值<1。清除所有Fluzone吗? VAERS数据库的2010-2011年报告未能证明EB05> 2的先前掩盖的疫苗不良事件对。灭活疫苗数据库的限制导致背景VAERS报告减少41%,前景VAERS报告减少24%。结论:VAERS中的经验贝叶斯数据挖掘可预期地检测出Fluzone后高热惊厥的安全信号? 2010-2011年的幼儿。 EB05阈值,数据库限制,调整和基线数据挖掘是优先采用的策略,可以提高2010-2011年流感疫苗数据挖掘分析的特异性。用于分离活疫苗的数据库限制导致EB05降低。数据挖掘分析的调整比MGPS算法对比例失调的估计影响更大。掩盖似乎没有影响我们的发现。该案例研究说明了VAERS数据挖掘对疫苗安全性监控的价值。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号