首页> 外文期刊>Drug discovery today. Disease models >Strange bedfellows: biologists and mathematical modelers tie the knot on cardiomyocyte calcium homeostasis
【24h】

Strange bedfellows: biologists and mathematical modelers tie the knot on cardiomyocyte calcium homeostasis

机译:奇怪的同床人:生物学家和数学建模者为心肌细胞钙稳态平衡纠缠不清

获取原文
获取原文并翻译 | 示例
           

摘要

The past several decades of experimental investigation have revealed a rich complexity of cardiomyocyte Ca2+ dynamics. Integrating and decomposing these complex data now increasingly relies on mathematical modeling approaches. In reviewing the evolution and contributions of these cardiomyocyte models, we emphasize the importance of data-driven model parameterization, with iterative data exchange between experimentalists and modelers leading to novel generation of hypotheses. Introduction In the simplest paradigm of cardiomyocyte Ca2+ homeostasis, L-type Ca2+ channels (LCCs) are opened during the depolarizing action potential, and the resulting Ca2+ influx triggers release of Ca2+ from the sarcoplasmic reticulum (SR) via ryanodine receptors (RyRs). Following release, Ca2+ is recycled into the SR by the SR Ca2+ ATPase (SERCA), and extruded from the cell, primarily by the Na+-Ca2+ exchanger (NCX). The action potential plays a key role in regulating the Ca2+ transient through its effects on the magnitude and kinetics of LCC and NCX currents. However, these currents themselves also regulate action potential shape, as do various Na+ and K+ currents. As we have increasingly studied the details of this interconnected system of pumps, channels and exchangers it has become clear that the complexity of cardiac Ca2+ dynamics is beyond intuitive analysis. Indeed, in many instances experimental analysis now relies on the use of quantitative models to integrate data and reveal mechanisms. In this review, we outline developments in modeling cardiomyocyte Ca2+ homeostasis, and highlight the need for an iterative loop formed between experiment and model. We particularly emphasize the advantages of data-driven model parameterization, and provide examples where the failure of models to reproduce experimental data has led to novel hypothesis generation later validated in experiments.
机译:在过去的几十年的实验研究中,发现了心肌细胞Ca2 +动力学的复杂性。现在,集成和分解这些复杂数据越来越依赖于数学建模方法。在回顾这些心肌细胞模型的演变和贡献时,我们强调了数据驱动的模型参数化的重要性,实验者和建模者之间的迭代数据交换导致了新的假设的产生。简介在最简单的心肌细胞Ca2 +稳态范式中,在去极化动作电位期间会打开L型Ca2 +通道(LCC),并且由此产生的Ca2 +内流触发通过ryanodine受体(RyRs)从肌浆网(SR)释放Ca2 +。释放后,Ca2 +通过SR Ca2 + ATPase(SERCA)再循环到SR中,并主要通过Na + -Ca2 +交换剂(NCX)从细胞中挤出。动作电位通过其对LCC和NCX电流的大小和动力学的影响,在调节Ca2 +瞬变中起关键作用。但是,这些电流本身也调节动作电位的形状,就像各种Na +和K +电流一样。随着我们越来越多地研究泵,通道和交换器的这种相互连接的系统的细节,很明显,心脏Ca2 +动力学的复杂性已经超出了直观的分析范围。实际上,在许多情况下,实验分析现在都依赖于使用定量模型来整合数据和揭示机制。在这篇综述中,我们概述了心肌细胞Ca2 +稳态建模的进展,并强调了在实验和模型之间形成迭代循环的必要性。我们特别强调数据驱动的模型参数化的优势,并提供示例,其中模型无法再现实验数据导致了后来在实验中得到验证的新颖假设的产生。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号