...
首页> 外文期刊>Developmental Neuroscience >Iron Deficiency Impairs Developing Hippocampal Neuron Gene Expression, Energy Metabolism, and Dendrite Complexity
【24h】

Iron Deficiency Impairs Developing Hippocampal Neuron Gene Expression, Energy Metabolism, and Dendrite Complexity

机译:铁缺乏症损害海马神经元基因表达,能量代谢和树突复杂性的发展。

获取原文
获取原文并翻译 | 示例
           

摘要

Iron deficiency (ID), with and without anemia, affects an estimated 2 billion people worldwide. ID is particularly deleterious during early-life brain development, leading to long-term neurological impairments including deficits in hippo-campus-mediated learning and memory. Neonatal rats with fetaleonatal ID anemia (IDA) have shorter hippocampal CA1 apical dendrites with disorganized branching. ID-induced dendritic structural abnormalities persist into adulthood despite normalization of the iron status. However, the specific developmental effects of neuronal iron loss on hippocampal neuron dendrite growth and branching are unknown. Embryonic hippocampal neuron cultures were chronically treated with deferoxamine (DFO, an iron chelator) beginning at 3 days in vitro (DIV). Levels of mRNA for Tfr1 and Slc11a2, iron-responsive genes involved in iron uptake, were significantly elevated in DFO-treated cultures at 11DIV and 18DIV, indicating a degree of neuronal ID similar to that seen in rodent ID models. DFO treatment decreased mRNA levels for genes indexing dendritic and synaptic development (i. e. BdnfVI, Camk2a, Vamp1, Psd95, Cfl1, Pfn1, Pfn2, and Gda) and mitochondrial function (i. e. Ucp2, Pink1, and Cox6a1). At 18DIV, DFO reduced key aspects of energy metabolism including basal respiration, maximal respiration, spare respiratory capacity, ATP production, and glycolytic rate, capacity, and reserve. Sholl analysis revealed a significant decrease in distal dendritic complexity in DFO-treated neurons at both 11DIV and 18DIV. At 11DIV, the length of primary dendrites and the number and length of branches in DFO-treated neurons were reduced. By 18DIV, partial recovery of the dendritic branch number in DFO-treated neurons was counteracted by a significant reduction in the number and length of primary dendrites and the length of branches. Our findings suggest that early neuronal iron loss, at least partially driven through altered mitochondrial function and neuronal energy metabolism, is responsible for the effects of fetaleonatal ID and IDA on hippocampal neuron dendritic and synaptic maturation. Impairments in these neurodevelopmental processes likely underlie the negative impact of early life ID and IDA on hippocampus-mediated learning and memory. (C) 2016 S. Karger AG, Basel
机译:患有或不患有贫血的铁缺乏症(ID)影响全世界约20亿人。 ID在生命早期的大脑发育过程中尤其有害,导致长期的神经功能障碍,包括海马-校园介导的学习和记忆不足。胎儿/新生儿ID贫血(IDA)的新生大鼠的海马CA1根尖树突较短,分支混乱。尽管铁水平正常,ID诱导的树突状结构异常仍持续到成年期。但是,神经元铁丢失对海马神经元树突生长和分支的特定发育影响尚不清楚。从体外3天(DIV)开始,用去铁胺(DFO,铁螯合剂)长期处理胚胎海马神经元培养物。 TFR1和Slc11a2(参与铁吸收的铁响应基因)的mRNA水平在11DIV和18DIV的DFO处理培养物中显着升高,表明神经元ID的程度类似于在啮齿动物ID模型中看到的程度。 DFO处理降低了索引树突和突触发育的基因(即BdnfVI,Camk2a,Vamp1,Psd95,Cfl1,Pfn1,Pfn2和Gda)和线粒体功能(即Ucp2,Pink1和Cox6a1)的mRNA水平。在18DIV,DFO减少了能量代谢的关键方面,包括基础呼吸,最大呼吸,备用呼吸容量,ATP产生以及糖酵解速率,容量和储备。 Sholl分析显示,在11DIV和18DIV处,经DFO处理的神经元的远端树突复杂性显着降低。在11DIV,DFO处理的神经元的初级树突的长度以及分支的数量和长度都减少了。通过18DIV,DFO处理的神经元中树突分支数的部分恢复被初级树突的数目和长度以及分支长度的显着减少所抵消。我们的发现表明,早期神经元铁的丢失(至少部分由线粒体功能的改变和神经元能量代谢引起)是胎儿/新生儿ID和IDA对海马神经元树突和突触成熟的影响。这些神经发育过程中的障碍可能是早期ID和IDA对海马介导的学习和记忆的负面影响。 (C)2016 S.Karger AG,巴塞尔

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号