首页> 外文期刊>Vacuum: Technology Applications & Ion Physics: The International Journal & Abstracting Service for Vacuum Science & Technology >Analytical and finite element method design of quartz tuning fork resonators and experimental test of samples manufactured using photolithography 2: comprehensive analysis of resonance frequencies using Sezawa's approximations
【24h】

Analytical and finite element method design of quartz tuning fork resonators and experimental test of samples manufactured using photolithography 2: comprehensive analysis of resonance frequencies using Sezawa's approximations

机译:石英音叉谐振器的分析和有限元方法设计以及使用光刻技术制造的样品的实验测试2:使用Sezawa近似值对谐振频率进行全面分析

获取原文
获取原文并翻译 | 示例
           

摘要

Resonance frequency of a quartz tuning fork crystal for use in chips of code division multiple access, personal communication system, and a global system for mobile communication was comprehensively analyzed by an analytical method, Sezawa's approximations and the finite element method. A comparison was also made in a more detailed and comprehensive manner among resonance frequencies calculated by the Sezawa's approximations. From the finite element method analysis results, actual tuning fork crystals were fabricated using mass-production capable positive (subtractive) photolithography, selective etching and subsequent positive (subtractive) photoresist spray coating method. A target resonance frequency of 32.768 kHz + 544 Hz was aimed at and a general scheme of commercially available 32.768 kHz tuning fork resonators was also followed in designing tuning fork geometry, tine electrode pattern and thickness. Comprehensive comparison was made among the modeled and experimentally measured resonance frequencies and the discrepancy explained and discussed. Finite element method analysis results quite closely agreed with the experimentally measured resonance frequencies (32.676-32.933 kHz) of the fabricated tuning fork samples measured at a vacuum level of 10(-5) Torr. The difference between modeling and experimentally measured resonance frequency is attributed to the error in exactly manufacturing tuning fork tine width by photolithography. However, the tuning fork design using finite element method modeling must be modified comprehensively to optimize various design parameters affecting both the resonance frequency and other crystal parameters, most importantly crystal impedance (series resistance). (c) 2005 Elsevier Ltd. All rights reserved.
机译:通过解析方法,Sezawa近似和有限元方法,对用于码分多址芯片,个人通信系统和全球移动通信系统的石英音叉晶体的共振频率进行了综合分析。在Sezawa近似计算的共振频率之间也进行了更详细和全面的比较。根据有限元方法的分析结果,使用具有批量生产能力的正(减)光刻,选择性刻蚀和随后的正(减)光刻胶喷涂方法制造了实际的音叉晶体。目标是32.768 kHz + 544 Hz的目标谐振频率,在设计音叉的几何形状,尖齿电极图案和厚度时,还遵循了市售32.768 kHz音叉谐振器的一般方案。在建模和实验测量的共振频率之间进行了全面比较,并解释和讨论了差异。有限元方法分析结果与在真空度为10(-5)Torr的情况下制作的音叉样品的实验测量谐振频率(32.676-32.933 kHz)非常吻合。建模和实验测量的共振频率之间的差异是由于光刻技术精确制造音叉齿宽度时的误差所致。但是,必须对使用有限元方法建模的音叉设计进行全面修改,以优化影响共振频率和其他晶体参数的各种设计参数,最重要的是晶体阻抗(串联电阻)。 (c)2005 Elsevier Ltd.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号