...
首页> 外文期刊>Zoology >Jumping sans legs: does elastic energy storage by the vertebral column power terrestrial jumps in bony fishes
【24h】

Jumping sans legs: does elastic energy storage by the vertebral column power terrestrial jumps in bony fishes

机译:无腿跳动:通过脊柱的弹性能量存储是否能增强骨骼鱼类的地面跳跃

获取原文
获取原文并翻译 | 示例

摘要

Despite having no obvious anatomical modifications to facilitate movement over land, numerous small fishes from divergent teleost lineages make brief, voluntary terrestrial forays to escape poor aquatic conditions or to pursue terrestrial prey. Once stranded, these fishes produce a coordinated and effective "tail-flip" jumping behavior, wherein lateral flexion of the axial body into a C-shape, followed by contralateral flexion of the body axis, propels the fish into a ballistic flight-path that covers a distance of multiple body lengths. We ask: how do anatomical structures that evolved in one habitat generate effective movement in a novel habitat? Within this context, we hypothesized that the mechanical properties of the axial skeleton play a critical role in producing effective overland movement, and that tail-flip jumping species demonstrate enhanced elastic energy storage through increased body flexural stiffness or increased body curvature, relative to non-jumping species. To test this hypothesis, we derived a model to predict elastic recoil work from the morphology of the vertebral (neural and hemal) spines. From ground reaction force (GRF) measurements and high-speed video, we calculated elastic recoil work, flexural stiffness, and apparentmaterial stiffness of the body for Micropterus salmoides (a non-jumper) and Kryptolebias marmoratus (adept tail-flip jumper). The model predicted no difference between the two species in work stored by the vertebral spines, and GRF data showed that theyproduce the same magnitude of mass-specific elastic recoil work. Surprisingly, non-jumper M. salmoides has a stiffer body than tail-flip jumper K. marmoratus. Many tail-flip jumping species possess enlarged, fused hypural bones that support the caudal peduncle, which suggests that the localized structures, rather than the entire axial skeleton, may explain differences in terrestrial performance.
机译:尽管没有明显的解剖学改变以利于在陆地上移动,但是许多来自不同硬骨鱼类谱系的小鱼进行了短暂的自愿陆生突袭,以逃避恶劣的水生条件或寻找陆生猎物。一旦搁浅,这些鱼就会产生协调而有效的“尾巴翻转”跳跃行为,其中,轴向身体的侧向弯曲成C形,然后身体轴的对侧弯曲,将鱼推进到弹道飞行路径中覆盖多个身体长度的距离。我们问:在一个栖息地中进化的解剖结构如何在一个新颖的栖息地中产生有效的运动?在此背景下,我们假设轴向骨架的机械性能在产生有效的陆上运动中起着关键作用,并且相对于非惯性运动,机尾跳动的物种通过增加的身体弯曲刚度或增加的身体曲率表现出增强的弹性能量存储。跳跃的物种。为了验证该假设,我们从椎骨(神经和血液)脊椎的形态推导了一个模型来预测弹性后坐力。根据地面反作用力(GRF)的测量结果和高速视频,我们计算了Salmoides小鳍(非跳线)和Marmoratus斜le(熟练的尾弹跳线)的弹性反冲功,挠曲刚度和表观材料刚度。该模型预测两种椎体在脊椎存储的工作中没有差异,GRF数据表明它们产生相同大小的质量比弹性反冲功。出人意料的是,非跳线沙门氏菌的身体比尾巴跳线跳马(K. marmoratus)更硬。许多甩尾跳动物种具有支撑尾柄的扩大的,融合的透明质骨,这表明局部结构而不是整个轴向骨骼可能解释了陆地活动的差异。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号