...
首页> 外文期刊>The Journal of Experimental Biology >Energy storage and synchronisation of hind leg movements during jumping in planthopper insects (Hemiptera, Issidae)
【24h】

Energy storage and synchronisation of hind leg movements during jumping in planthopper insects (Hemiptera, Issidae)

机译:跳跃在飞虱昆虫中的能量存储和后腿运动的同步化(半翅目,Issidae)

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

The hind legs of Issus (Hemiptera, Issidae) move in the same plane underneath the body, an arrangement that means they must also move synchronously to power jumping. Moreover, they move so quickly that energy must be stored before a jump and then released suddenly. High speed imaging and analysis of the mechanics of the proximal joints of the hind legs show that mechanical mechanisms ensure both synchrony of movements and energy storage. The hind trochantera move first in jumping and are synchronised to within 30 mu s. Synchrony is achieved by mechanical interactions between small protrusions from each trochantera which fluoresce bright blue under specific wavelengths of ultra-violet light and which touch at the midline when the legs are cocked before a jump. In dead Issus, a depression force applied to a cocked hind leg, or to the tendon of its trochanteral depressor muscle causes a simultaneous depression of both hind legs. The protrusion of the hind leg that moves first nudges the other hind leg so that both move synchronously. Contractions of the trochanteral depressor muscles that precede a jump bend the metathoracic pleural arches of the internal skeleton. Large areas of these bow-shaped structures fluoresce bright blue in ultraviolet light, and the intensity of this fluorescence depends on the pH of the bathing saline. These are key signatures of the rubber-like protein resilin. The remainder of a pleural arch consists of stiff cuticle. Bending these composite structures stores energy and their recoil powers jumping.
机译:Issus(Hemiptera,Issidae)的后腿在身体下方的同一平面中移动,这意味着它们还必须同步移动才能进行力量跳跃。而且,它们移动得如此之快,以至于能量必须在跳跃之前存储起来,然后突然释放。高速成像和后腿近端关节的力学分析表明,机械机构可确保运动和能量存储的同步。后转子粗隆首先跳跃,并在30 s内同步。同步是通过每个转子的小突起之间的机械相互作用来实现的,这些小突起在特定波长的紫外线下发出明亮的蓝色荧光,并且在腿部在跳跃前翘起时会碰到中线。在死亡的艾苏斯(Issus)中,施加在翘起的后腿或其转子粗隆压迫肌腱上的压迫力会导致两只后腿同时压迫。后腿先移动的突出物会推动另一根后腿同步移动。跳跃之前的转子粗隆压迫肌的收缩使内部骨骼的胸廓胸膜弓弯曲。这些弓形结构的大面积在紫外线下发出明亮的蓝色荧光,并且这种荧光的强度取决于沐浴盐水的pH值。这些是橡胶样蛋白质弹性蛋白的关键特征。胸膜弓的其余部分由坚硬的角质层组成。弯曲这些复合结构会存储能量,并且其反冲力会跳跃。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号