...
首页> 外文期刊>Hydrology and Earth System Sciences >Laser vision: lidar as a transformative tool to advance critical zone science
【24h】

Laser vision: lidar as a transformative tool to advance critical zone science

机译:激光视觉:激光雷达作为促进关键区域科学发展的变革工具

获取原文
获取原文并翻译 | 示例
           

摘要

Observation and quantification of the Earth's surface is undergoing a revolutionary change due to the increased spatial resolution and extent afforded by light detection and ranging (lidar) technology. As a consequence, lidar-derived information has led to fundamental discoveries within the individual disciplines of geomorphology, hydrology, and ecology. These disciplines form the cornerstones of critical zone (CZ) science, where researchers study how interactions among the geosphere, hydrosphere, and biosphere shape and maintain the 'zone of life', which extends from the top of unweathered bedrock to the top of the vegetation canopy. Fundamental to CZ science is the development of transdisciplinary theories and tools that transcend disciplines and inform other's work, capture new levels of complexity, and create new intellectual outcomes and spaces. Researchers are just beginning to use lidar data sets to answer synergistic, transdisciplinary questions in CZ science, such as how CZ processes co-evolve over long timescales and interact over shorter timescales to create thresholds, shifts in states and fluxes of water, energy, and carbon. The objective of this review is to elucidate the transformative potential of lidar for CZ science to simultaneously allow for quantification of topographic, vegetative, and hydrological processes. A review of 147 peer-reviewed lidar studies highlights a lack of lidar applications for CZ studies as 38 % of the studies were focused in geomorphology, 18 % in hydrology, 32 % in ecology, and the remaining 12 % had an interdisciplinary focus. A handful of exemplar transdisciplinary studies demonstrate lidar data sets that are well-integrated with other observations can lead to fundamental advances in CZ science, such as identification of feedbacks between hydrological and ecological processes over hillslope scales and the synergistic co-evolution of landscape-scale CZ structure due to interactions amongst carbon, energy, and water cycles. We propose that using lidar to its full potential will require numerous advances, including new and more powerful open-source processing tools, exploiting new lidar acquisition technologies, and improved integration with physically based models and complementary in situ and remote-sensing observations. We provide a 5-year vision that advocates for the expanded use of lidar data sets and highlights subsequent potential to advance the state of CZ science.
机译:由于光检测和测距(激光)技术提供了更高的空间分辨率和范围,对地球表面的观测和量化正在发生革命性的变化。结果,来自激光雷达的信息导致了地貌学,水文学和生态学等各个学科的基础发现。这些学科构成了关键区域(CZ)科学的基石,研究人员在其中研究了地球圈,水圈和生物圈之间的相互作用如何形成并维持“生命区域”,该区域从未风化的基岩顶部延伸至植被顶部天篷。 CZ科学的基础是跨学科理论和工具的发展,这些学科和理论超越学科并为他人的工作提供信息,捕捉新的复杂性水平,并创造新的智力成果和空间。研究人员才刚刚开始使用激光雷达数据集来回答CZ科学中的协同,跨学科问题,例如CZ过程如何在较长的时间尺度上共同发展并在较短的时间尺度上相互作用以创建阈值,状态变化以及水,能量和水的通量。碳。这篇综述的目的是阐明激光雷达对CZ科学的转化潜力,以同时量化地形,营养和水文过程。一项对147项同行评审的激光雷达研究的评论强调指出,CZ研究缺乏激光雷达应用,因为38%的研究集中在地貌学,18%的水文学,32%的生态学以及其余12%的研究涉及跨学科。少量的示例性跨学科研究表明,与其他观测值很好地整合在一起的激光雷达数据集可以导致CZ科学的根本进步,例如识别坡度水文和生态过程之间的反馈以及景观尺度的协同协同演化由于碳,能量和水循环之间的相互作用,CZ结构。我们建议,要充分利用激光雷达的潜力,将需要许多进步,包括新的和功能更强大的开源处理工具,开发新的激光雷达采集技术,与基于物理的模型以及互补的原位和遥感观测进行更好的集成。我们提供了一个为期5年的愿景,提倡扩大激光雷达数据集的使用范围,并强调其随后推动CZ科学发展的潜力。

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号